origin
This commit is contained in:
4
digit_depth/__init__.py
Normal file
4
digit_depth/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .digit import *
|
||||
from .third_party import *
|
||||
from .train import *
|
||||
from .handlers import *
|
||||
97
digit_depth/dataio/combine_A_and_B.py
Normal file
97
digit_depth/dataio/combine_A_and_B.py
Normal file
@@ -0,0 +1,97 @@
|
||||
"""
|
||||
combine_A_and_B.py
|
||||
Preprocessing for pix2pix
|
||||
|
||||
Copyright (c) 2016, Phillip Isola and Jun-Yan Zhu
|
||||
All rights reserved.
|
||||
|
||||
BSD License
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
from multiprocessing import Pool
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def image_write(path_A, path_B, path_AB):
|
||||
im_A = cv2.imread(
|
||||
path_A, 1
|
||||
) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR
|
||||
im_B = cv2.imread(
|
||||
path_B, 1
|
||||
) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR
|
||||
|
||||
# im_A = cv2.transpose(im_A)
|
||||
# im_B = cv2.transpose(im_B)
|
||||
|
||||
im_AB = np.concatenate([im_A, im_B], 1)
|
||||
cv2.imwrite(path_AB, im_AB)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser("create image pairs")
|
||||
parser.add_argument("--fold_A", dest="fold_A", help="input directory for image A", type=str, default="../dataset/50kshoes_edges")
|
||||
parser.add_argument("--fold_B", dest="fold_B", help="input directory for image B", type=str, default="../dataset/50kshoes_jpg")
|
||||
parser.add_argument("--fold_AB", dest="fold_AB", help="output directory", type=str, default="../dataset/test_AB")
|
||||
parser.add_argument("--num_imgs", dest="num_imgs", help="number of images", type=int, default=1000000)
|
||||
parser.add_argument("--use_AB", dest="use_AB", help="if true: (0001_A, 0001_B) to (0001_AB)", action="store_true")
|
||||
parser.add_argument("--no_multiprocessing", dest="no_multiprocessing", help="If used, chooses single CPU execution instead of parallel execution", action="store_true", default=False,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
for arg in vars(args):
|
||||
print("[%s] = " % arg, getattr(args, arg))
|
||||
|
||||
splits = os.listdir(args.fold_A)
|
||||
|
||||
if not args.no_multiprocessing:
|
||||
pool = Pool()
|
||||
|
||||
for sp in splits:
|
||||
img_fold_A = os.path.join(args.fold_A, sp)
|
||||
img_fold_B = os.path.join(args.fold_B, sp)
|
||||
img_list = os.listdir(img_fold_A)
|
||||
if args.use_AB:
|
||||
img_list = [img_path for img_path in img_list if "_A." in img_path]
|
||||
|
||||
num_imgs = min(args.num_imgs, len(img_list))
|
||||
print("split = %s, use %d/%d images" % (sp, num_imgs, len(img_list)))
|
||||
img_fold_AB = os.path.join(args.fold_AB, sp)
|
||||
if not os.path.isdir(img_fold_AB):
|
||||
os.makedirs(img_fold_AB)
|
||||
print("split = %s, number of images = %d" % (sp, num_imgs))
|
||||
for n in range(num_imgs):
|
||||
name_A = img_list[n]
|
||||
path_A = os.path.join(img_fold_A, name_A)
|
||||
if args.use_AB:
|
||||
name_B = name_A.replace("_A.", "_B.")
|
||||
else:
|
||||
name_B = name_A
|
||||
path_B = os.path.join(img_fold_B, name_B)
|
||||
if os.path.isfile(path_A) and os.path.isfile(path_B):
|
||||
name_AB = name_A
|
||||
if args.use_AB:
|
||||
name_AB = name_AB.replace("_A.", ".") # remove _A
|
||||
path_AB = os.path.join(img_fold_AB, name_AB)
|
||||
if not args.no_multiprocessing:
|
||||
pool.apply_async(image_write, args=(path_A, path_B, path_AB))
|
||||
else:
|
||||
im_A = cv2.imread(path_A, 1) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR
|
||||
im_B = cv2.imread(path_B, 1) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR
|
||||
im_AB = np.concatenate([im_A, im_B], 1)
|
||||
cv2.imwrite(path_AB, im_AB)
|
||||
if not args.no_multiprocessing:
|
||||
pool.close()
|
||||
pool.join()
|
||||
109
digit_depth/dataio/create_csv.py
Normal file
109
digit_depth/dataio/create_csv.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import glob
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from PIL import Image
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
def create_pixel_csv(img_dir: str, save_dir: str, img_type: str):
|
||||
"""
|
||||
Creates a CSV file with the pixel coordinates of the image
|
||||
:param img_dir: image directory containing the images
|
||||
:param save_dir: directory for saving the CSV file per image
|
||||
:param img_type: color or normal
|
||||
:return: saves the CSV file per image0
|
||||
"""
|
||||
imgs = sorted(glob.glob(f"{img_dir}/*.png"))
|
||||
print(f"Found {len(imgs)} {img_type} images")
|
||||
for idx, img_path in enumerate(imgs):
|
||||
img = Image.open(img_path)
|
||||
img_np = np.array(img)
|
||||
xy_coords = np.flip(
|
||||
np.column_stack(np.where(np.all(img_np >= 0, axis=2))), axis=1
|
||||
)
|
||||
rgb = np.reshape(img_np, (np.prod(img_np.shape[:2]), 3))
|
||||
# Add pixel numbers in front
|
||||
pixel_numbers = np.expand_dims(np.arange(1, xy_coords.shape[0] + 1), axis=1)
|
||||
value = np.hstack([pixel_numbers, xy_coords, rgb])
|
||||
# Properly save as CSV
|
||||
if img_type == "color":
|
||||
df = pd.DataFrame(value, columns=["pixel_number", "X", "Y", "R", "G", "B"])
|
||||
del df["pixel_number"]
|
||||
df.to_csv(f"{save_dir}/image_{idx}.csv", sep=",", index=False)
|
||||
elif img_type == "normal":
|
||||
df = pd.DataFrame(value, columns=["pixel_number", "X", "Y", "Nx", "Ny", "Nz"])
|
||||
del df["pixel_number"]
|
||||
df.to_csv(f"{save_dir}/image_{idx}.csv", sep=",", index=False)
|
||||
print(f"{img_type} image CSV written for image {idx}")
|
||||
|
||||
|
||||
def combine_csv(csv_dir: str, img_type: str):
|
||||
"""
|
||||
Combines all the CSV files in the directory into one CSV file for later use in training
|
||||
|
||||
:param csv_dir: directory containing the CSV files
|
||||
:param img_type: color or normal
|
||||
"""
|
||||
csv_files=(glob.glob(f"{csv_dir}/*.csv"))
|
||||
print(f"Found {len(csv_files)} {img_type} CSV files")
|
||||
df = pd.concat([pd.read_csv(f, sep=",") for f in (glob.glob(f"{csv_dir}/*.csv"))])
|
||||
df.to_csv(f"{csv_dir}/combined.csv", sep=",", index=False)
|
||||
print(f"Combined CSV written for {img_type} images")
|
||||
check_nans(f"{csv_dir}/combined.csv")
|
||||
print("----------------------------------------------------")
|
||||
|
||||
|
||||
def create_train_test_csv(save_dir: str, normal_path: str, color_path: str):
|
||||
"""
|
||||
Creates a CSV file with the pixel coordinates of the image. Samples 4% from zeros.
|
||||
Splits the cleaned dataset into train and test (80%/20%)
|
||||
:param save_dir: path for train_test_split folder
|
||||
:param normal_path: path to combined normal CSV file
|
||||
:param color_path: path to combined color CSV file
|
||||
"""
|
||||
seed=42
|
||||
rgb_df = pd.read_csv(color_path, sep=",")
|
||||
normal_df = pd.read_csv(normal_path, sep=",")
|
||||
|
||||
rgb_df['Nx'] = normal_df['Nx']
|
||||
rgb_df['Ny'] = normal_df['Ny']
|
||||
rgb_df['Nz'] = normal_df['Nz']
|
||||
|
||||
zeros_df = rgb_df[(rgb_df['Nx'] == 127) & (rgb_df['Ny'] == 127) ^ (rgb_df['Nz'] == 127)]
|
||||
print(f"Found {len(zeros_df)} zeros in the dataset")
|
||||
non_zeros_df = rgb_df[(rgb_df['Nx'] != 127) | (rgb_df['Ny'] != 127) & (rgb_df['Nz'] != 127)]
|
||||
print(f"Found {len(non_zeros_df)} non-zeros in the dataset")
|
||||
zeros_df.to_csv(f"{save_dir}/zeros.csv", sep=",", index=False)
|
||||
non_zeros_df.to_csv(f"{save_dir}/non_zeros.csv", sep=",", index=False)
|
||||
print("----------------------------------------------------")
|
||||
# sampling 4% of zeros
|
||||
clean_df = zeros_df.sample(frac=0.04, random_state=seed)
|
||||
clean_df = pd.concat([clean_df, non_zeros_df])
|
||||
clean_df.to_csv(f"{save_dir}/clean-data.csv", sep=",", index=False)
|
||||
print(f"Clean data CSV of {len(clean_df)} written")
|
||||
|
||||
# split into train and test
|
||||
train_df,test_df=train_test_split(clean_df,test_size=0.2,random_state=seed)
|
||||
train_df.to_csv(f"{save_dir}/train.csv", sep=",", index=False)
|
||||
test_df.to_csv(f"{save_dir}/test.csv", sep=",", index=False)
|
||||
print(f"Train set of size {len(train_df)} and Test set of size {len(test_df)} written")
|
||||
|
||||
|
||||
def check_nans(csv_path: str):
|
||||
"""
|
||||
Checks if there are any NaNs in the CSV file
|
||||
:param csv_path: path to the CSV file
|
||||
:return: True if there are no NaNs, False otherwise
|
||||
"""
|
||||
df = pd.read_csv(csv_path, sep=",")
|
||||
if df.isnull().values.any():
|
||||
nans=df.isnull().sum().sum()
|
||||
print(f"Found {nans} NaNs in {csv_path}")
|
||||
print("Replacing NaNs with mean")
|
||||
df.fillna(df.mean(), inplace=True)
|
||||
df.to_csv(csv_path, sep=",", index=False)
|
||||
print(f"NaNs replaced in {csv_path}")
|
||||
else:
|
||||
print("No NaNs found.Perfect!")
|
||||
|
||||
22
digit_depth/dataio/data_loader.py
Normal file
22
digit_depth/dataio/data_loader.py
Normal file
@@ -0,0 +1,22 @@
|
||||
"""
|
||||
Data loader for the color-normal datasets
|
||||
"""
|
||||
import torchvision.transforms as transforms
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from digit_depth.dataio.digit_dataset import DigitRealImageAnnotDataset
|
||||
|
||||
|
||||
def data_loader(dir_dataset, params):
|
||||
"""A data loader for the color-normal datasets
|
||||
Args:
|
||||
dir_dataset: path to the dataset
|
||||
params: a dict of parameters
|
||||
"""
|
||||
transform = transforms.Compose([transforms.ToTensor()])
|
||||
dataset = DigitRealImageAnnotDataset( dir_dataset=dir_dataset, annot_file=params.annot_file,
|
||||
transform=transform, annot_flag=params.annot_flag)
|
||||
dataloader = DataLoader(dataset, batch_size=params.batch_size, shuffle=params.shuffle,
|
||||
num_workers=params.num_workers)
|
||||
|
||||
return dataloader, dataset
|
||||
43
digit_depth/dataio/digit_dataset.py
Normal file
43
digit_depth/dataio/digit_dataset.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import glob
|
||||
|
||||
import pandas as pd
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
|
||||
class DigitRealImageAnnotDataset(Dataset):
|
||||
def __init__( self, dir_dataset, annot_file, transform=None, annot_flag=True, img_type="png" ):
|
||||
self.dir_dataset = dir_dataset
|
||||
print(f"Loading dataset from {dir_dataset}")
|
||||
self.transform = transform
|
||||
self.annot_flag = annot_flag
|
||||
|
||||
# a list of image paths sorted. dir_dataset is the root dir of the datasets (color)
|
||||
self.img_files = sorted(glob.glob(f"{self.dir_dataset}/*.{img_type}"))
|
||||
print(f"Found {len(self.img_files)} images")
|
||||
if self.annot_flag:
|
||||
self.annot_dataframe = pd.read_csv(annot_file, sep=",")
|
||||
|
||||
def __getitem__(self, idx):
|
||||
"""Returns a tuple of (img, annot) where annot is a tensor of shape (3,1)"""
|
||||
|
||||
# read in image
|
||||
img = Image.open(self.img_files[idx])
|
||||
img = self.transform(img)
|
||||
img = img.permute(0, 2, 1) # (3,240,320) -> (3,320,240)
|
||||
# read in region annotations
|
||||
if self.annot_flag:
|
||||
img_name = self.img_files[idx]
|
||||
row_filter = self.annot_dataframe["img_names"] == img_name
|
||||
region_attr = self.annot_dataframe.loc[
|
||||
row_filter, ["center_x", "center_y", "radius"]
|
||||
]
|
||||
annot = (torch.tensor(region_attr.values, dtype=torch.int32) if (len(region_attr) > 0) else torch.tensor([]))
|
||||
data = img
|
||||
if self.annot_flag:
|
||||
data = (img, annot)
|
||||
return data
|
||||
|
||||
def __len__(self):
|
||||
return len(self.img_files)
|
||||
47
digit_depth/dataio/generate_sphere_gt_normals.py
Normal file
47
digit_depth/dataio/generate_sphere_gt_normals.py
Normal file
@@ -0,0 +1,47 @@
|
||||
"""
|
||||
Script for generating sphere ground truth normal images.
|
||||
"""
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def generate_sphere_gt_normals(img_mask, center_x, center_y, radius):
|
||||
"""
|
||||
Generates sphere ground truth normal images for an image.
|
||||
Args:
|
||||
img_mask: a numpy array of shape [H, W, 3]
|
||||
center_x: x coordinate of the center of the sphere
|
||||
center_y: y coordinate of the center of the sphere
|
||||
radius: the radius of the sphere
|
||||
Returns:
|
||||
img_normal: a numpy array of shape [H, W, 3]
|
||||
"""
|
||||
img_normal = np.zeros(img_mask.shape, dtype="float64")
|
||||
|
||||
for y in range(img_mask.shape[0]):
|
||||
for x in range(img_mask.shape[1]):
|
||||
|
||||
img_normal[y, x, 0] = 0.0
|
||||
img_normal[y, x, 1] = 0.0
|
||||
img_normal[y, x, 2] = 1.0
|
||||
|
||||
if np.sum(img_mask[y, x, :]) > 0:
|
||||
dist = np.sqrt((x - center_x) ** 2 + (y - center_y) ** 2)
|
||||
ang_xz = math.acos(dist / radius)
|
||||
ang_xy = math.atan2(y - center_y, x - center_x)
|
||||
|
||||
nx = math.cos(ang_xz) * math.cos(ang_xy)
|
||||
ny = math.cos(ang_xz) * math.sin(ang_xy)
|
||||
nz = math.sin(ang_xz)
|
||||
|
||||
img_normal[y, x, 0] = nx
|
||||
img_normal[y, x, 1] = -ny
|
||||
img_normal[y, x, 2] = nz
|
||||
|
||||
norm_val = np.linalg.norm(img_normal[y, x, :])
|
||||
img_normal[y, x, :] = img_normal[y, x, :] / norm_val
|
||||
|
||||
# img_normal between [-1., 1.], converting to [0., 1.]
|
||||
img_normal = (img_normal + 1.0) * 0.5
|
||||
return img_normal
|
||||
1
digit_depth/digit/__init__.py
Normal file
1
digit_depth/digit/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .digit_sensor import *
|
||||
37
digit_depth/digit/digit_sensor.py
Normal file
37
digit_depth/digit/digit_sensor.py
Normal file
@@ -0,0 +1,37 @@
|
||||
import time
|
||||
|
||||
from digit_interface import Digit
|
||||
from digit_interface.digit import DigitDefaults
|
||||
|
||||
|
||||
class DigitSensor:
|
||||
def __init__(self, fps: int, resolution: str, serial_num: str):
|
||||
self.fps = fps
|
||||
self.resolution = resolution
|
||||
self.serial_num = serial_num
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
"""Calls the digit sensor."""
|
||||
digit = self.setup_digit()
|
||||
return digit
|
||||
|
||||
def __str__(self):
|
||||
return f"DigitSensor(fps={self.fps}, resolution={self.resolution}, serial_num={self.serial_num})"
|
||||
|
||||
def setup_digit(self,):
|
||||
"Sets up the digit sensor and returns it."
|
||||
|
||||
digit = Digit(self.serial_num)
|
||||
digit.connect()
|
||||
|
||||
rgb_list = [(15, 0, 0), (0, 15, 0), (0, 0, 15)]
|
||||
|
||||
for rgb in rgb_list:
|
||||
digit.set_intensity_rgb(*rgb)
|
||||
time.sleep(1)
|
||||
digit.set_intensity(15)
|
||||
resolution = DigitDefaults.STREAMS[self.resolution]
|
||||
digit.set_resolution(resolution)
|
||||
fps = Digit.STREAMS[self.resolution]["fps"][str(self.fps) + "fps"]
|
||||
digit.set_fps(fps)
|
||||
return digit
|
||||
1
digit_depth/handlers/__init__.py
Normal file
1
digit_depth/handlers/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .image import ImageHandler
|
||||
38
digit_depth/handlers/image.py
Normal file
38
digit_depth/handlers/image.py
Normal file
@@ -0,0 +1,38 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
|
||||
|
||||
class ImageHandler:
|
||||
def __init__(self, img_path, convert="RGB"):
|
||||
self.img = Image.open(img_path).convert(convert)
|
||||
self.convert = convert
|
||||
|
||||
@staticmethod
|
||||
def tensor_to_PIL(self, img_tensor):
|
||||
img_tensor = img_tensor.squeeze_(0)
|
||||
return transforms.ToPILImage()(img_tensor).convert(self.convert)
|
||||
|
||||
@property
|
||||
def tensor(self):
|
||||
return transforms.ToTensor()(self.img).unsqueeze_(0)
|
||||
|
||||
@property
|
||||
def image(self):
|
||||
return self.img
|
||||
|
||||
@property
|
||||
def nparray(self):
|
||||
return np.array(self.img)
|
||||
|
||||
@staticmethod
|
||||
def save(file_name, img):
|
||||
if isinstance(img, Image.Image):
|
||||
# this is a PIL image
|
||||
img.save(file_name)
|
||||
else:
|
||||
# cv2 image
|
||||
cv2.imwrite(file_name, img)
|
||||
4
digit_depth/third_party/__init__.py
vendored
Normal file
4
digit_depth/third_party/__init__.py
vendored
Normal file
@@ -0,0 +1,4 @@
|
||||
from .data_utils import *
|
||||
from .geom_utils import *
|
||||
from .vis_utils import *
|
||||
from .poisson import *
|
||||
30
digit_depth/third_party/data_utils.py
vendored
Normal file
30
digit_depth/third_party/data_utils.py
vendored
Normal file
@@ -0,0 +1,30 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
"""
|
||||
dataloader, logger helpers
|
||||
"""
|
||||
|
||||
|
||||
def pandas_col_to_numpy(df_col):
|
||||
|
||||
df_col = df_col.apply(lambda x: np.fromstring(x.replace("\n", "").replace("[", "").replace("]", "").replace(" ", " "), sep=", "))
|
||||
df_col = np.stack(df_col)
|
||||
return df_col
|
||||
|
||||
|
||||
def pandas_string_to_numpy(arr_str):
|
||||
arr_npy = np.fromstring(arr_str.replace("\n", "").replace("[", "").replace("]", "").replace(" ", " "),sep=", ")
|
||||
return arr_npy
|
||||
|
||||
|
||||
def interpolate_img(img, rows, cols):
|
||||
"""
|
||||
img: C x H x W
|
||||
"""
|
||||
|
||||
img = torch.nn.functional.interpolate(img, size=cols)
|
||||
img = torch.nn.functional.interpolate(img.permute(0, 2, 1), size=rows)
|
||||
img = img.permute(0, 2, 1)
|
||||
|
||||
return img
|
||||
531
digit_depth/third_party/geom_utils.py
vendored
Normal file
531
digit_depth/third_party/geom_utils.py
vendored
Normal file
@@ -0,0 +1,531 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
|
||||
import copy
|
||||
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
import torch
|
||||
from scipy import ndimage
|
||||
|
||||
from digit_depth.third_party.poisson import poisson_reconstruct
|
||||
from digit_depth.third_party.vis_utils import visualize_inlier_outlier
|
||||
|
||||
"""
|
||||
Common functions
|
||||
"""
|
||||
|
||||
|
||||
def flip(x):
|
||||
return torch.flip(x, dims=[0])
|
||||
|
||||
|
||||
def min_clip(x, min_val):
|
||||
return torch.max(x, min_val)
|
||||
|
||||
|
||||
def max_clip(x, max_val):
|
||||
return torch.min(x, max_val)
|
||||
|
||||
|
||||
def normalize(x, min_val, max_val):
|
||||
return (x - torch.min(x)) * (max_val - min_val) / (
|
||||
torch.max(x) - torch.min(x)
|
||||
) + min_val
|
||||
|
||||
|
||||
def mask_background(x, bg_mask, bg_val=0.0):
|
||||
if bg_mask is not None:
|
||||
x[bg_mask] = bg_val
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def remove_background_pts(pts, bg_mask=None):
|
||||
if bg_mask is not None:
|
||||
fg_mask_pts = ~bg_mask.view(-1)
|
||||
points3d_x = pts[0, fg_mask_pts].view(1, -1)
|
||||
points3d_y = pts[1, fg_mask_pts].view(1, -1)
|
||||
points3d_z = pts[2, fg_mask_pts].view(1, -1)
|
||||
pts_fg = torch.cat((points3d_x, points3d_y, points3d_z), dim=0)
|
||||
else:
|
||||
pts_fg = pts
|
||||
|
||||
return pts_fg
|
||||
|
||||
|
||||
"""
|
||||
3D transform helper functions
|
||||
"""
|
||||
|
||||
|
||||
def Rt_to_T(R=None, t=None, device=None):
|
||||
"""
|
||||
:param R: rotation, (B, 3, 3) or (3, 3)
|
||||
:param t: translation, (B, 3) or (3)
|
||||
:return: T, (B, 4, 4) or (4, 4)
|
||||
"""
|
||||
|
||||
T = torch.eye(4, device=device)
|
||||
|
||||
if (len(R.shape) > 2) & (len(t.shape) > 1): # batch version
|
||||
B = R.shape[0]
|
||||
T = T.repeat(B, 1, 1)
|
||||
if R is not None:
|
||||
T[:, 0:3, 0:3] = R
|
||||
if t is not None:
|
||||
T[:, 0:3, -1] = t
|
||||
|
||||
else:
|
||||
if R is not None:
|
||||
T[0:3, 0:3] = R
|
||||
if t is not None:
|
||||
T[0:3, -1] = t
|
||||
|
||||
return T
|
||||
|
||||
|
||||
def transform_pts3d(T, pts):
|
||||
"""
|
||||
T: 4x4
|
||||
pts: 3xN
|
||||
|
||||
returns 3xN
|
||||
"""
|
||||
D, N = pts.shape
|
||||
|
||||
if D == 3:
|
||||
pts_tf = (
|
||||
torch.cat((pts, torch.ones(1, N)), dim=0)
|
||||
if torch.is_tensor(pts)
|
||||
else np.concatenate((pts, torch.ones(1, N)), axis=0)
|
||||
)
|
||||
|
||||
pts_tf = torch.matmul(T, pts_tf) if torch.is_tensor(pts) else np.matmul(T, pts_tf)
|
||||
pts_tf = pts_tf[0:3, :]
|
||||
|
||||
return pts_tf
|
||||
|
||||
|
||||
"""
|
||||
3D-2D projection / conversion functions
|
||||
OpenGL transforms reference: http://www.songho.ca/opengl/gl_transform.html
|
||||
"""
|
||||
|
||||
|
||||
def _vectorize_pixel_coords(rows, cols, device=None):
|
||||
y_range = torch.arange(rows, device=device)
|
||||
x_range = torch.arange(cols, device=device)
|
||||
grid_x, grid_y = torch.meshgrid(x_range, y_range)
|
||||
pixel_pos = torch.stack([grid_x.reshape(-1), grid_y.reshape(-1)], dim=0) # 2 x N
|
||||
|
||||
return pixel_pos
|
||||
|
||||
|
||||
def _clip_to_pixel(clip_pos, img_shape, params):
|
||||
H, W = img_shape
|
||||
|
||||
# clip -> ndc coords
|
||||
x_ndc = clip_pos[0, :] / clip_pos[3, :]
|
||||
y_ndc = clip_pos[1, :] / clip_pos[3, :]
|
||||
# z_ndc = clip_pos[2, :] / clip_pos[3, :]
|
||||
|
||||
# ndc -> pixel coords
|
||||
x_pix = (W - 1) / 2 * (x_ndc + 1) # [-1, 1] -> [0, W-1]
|
||||
y_pix = (H - 1) / 2 * (y_ndc + 1) # [-1, 1] -> [0, H-1]
|
||||
# z_pix = (f-n) / 2 * z_ndc + (f+n) / 2
|
||||
|
||||
pixel_pos = torch.stack((x_pix, y_pix), dim=0)
|
||||
|
||||
return pixel_pos
|
||||
|
||||
|
||||
def _pixel_to_clip(pix_pos, depth_map, params):
|
||||
"""
|
||||
:param pix_pos: position in pixel space, (2, N)
|
||||
:param depth_map: depth map, (H, W)
|
||||
:return: clip_pos position in clip space, (4, N)
|
||||
"""
|
||||
|
||||
x_pix = pix_pos[0, :]
|
||||
y_pix = pix_pos[1, :]
|
||||
|
||||
H, W = depth_map.shape
|
||||
f = params.z_far
|
||||
n = params.z_near
|
||||
|
||||
# pixel -> ndc coords
|
||||
x_ndc = 2 / (W - 1) * x_pix - 1 # [0, W-1] -> [-1, 1]
|
||||
y_ndc = 2 / (H - 1) * y_pix - 1 # [0, H-1] -> [-1, 1]
|
||||
z_buf = depth_map[y_pix, x_pix]
|
||||
|
||||
# ndc -> clip coords
|
||||
z_eye = -z_buf
|
||||
w_c = -z_eye
|
||||
x_c = x_ndc * w_c
|
||||
y_c = y_ndc * w_c
|
||||
z_c = -(f + n) / (f - n) * z_eye - 2 * f * n / (f - n) * 1.0
|
||||
|
||||
clip_pos = torch.stack([x_c, y_c, z_c, w_c], dim=0)
|
||||
|
||||
return clip_pos
|
||||
|
||||
|
||||
def _clip_to_eye(clip_pos, P):
|
||||
P_inv = torch.inverse(P)
|
||||
eye_pos = torch.matmul(P_inv, clip_pos)
|
||||
|
||||
return eye_pos
|
||||
|
||||
|
||||
def _eye_to_clip(eye_pos, P):
|
||||
clip_pos = torch.matmul(P, eye_pos)
|
||||
|
||||
return clip_pos
|
||||
|
||||
|
||||
def _eye_to_world(eye_pos, V):
|
||||
V_inv = torch.inverse(V)
|
||||
world_pos = torch.matmul(V_inv, eye_pos)
|
||||
|
||||
world_pos = world_pos / world_pos[3, :]
|
||||
|
||||
return world_pos
|
||||
|
||||
|
||||
def _world_to_eye(world_pos, V):
|
||||
eye_pos = torch.matmul(V, world_pos)
|
||||
|
||||
return eye_pos
|
||||
|
||||
|
||||
def _world_to_object(world_pos, M):
|
||||
M_inv = torch.inverse(M)
|
||||
obj_pos = torch.matmul(M_inv, world_pos)
|
||||
|
||||
obj_pos = obj_pos / obj_pos[3, :]
|
||||
|
||||
return obj_pos
|
||||
|
||||
|
||||
def _object_to_world(obj_pos, M):
|
||||
world_pos = torch.matmul(M, obj_pos)
|
||||
|
||||
world_pos = world_pos / world_pos[3, :]
|
||||
|
||||
return world_pos
|
||||
|
||||
|
||||
def depth_to_pts3d(depth, P, V, params=None, ordered_pts=False):
|
||||
"""
|
||||
:param depth: depth map, (C, H, W) or (H, W)
|
||||
:param P: projection matrix, (4, 4)
|
||||
:param V: view matrix, (4, 4)
|
||||
:return: world_pos position in 3d world coordinates, (3, H, W) or (3, N)
|
||||
"""
|
||||
|
||||
assert 2 <= len(depth.shape) <= 3
|
||||
assert P.shape == (4, 4)
|
||||
assert V.shape == (4, 4)
|
||||
|
||||
depth_map = depth.squeeze(0) if (len(depth.shape) == 3) else depth
|
||||
H, W = depth_map.shape
|
||||
pixel_pos = _vectorize_pixel_coords(rows=H, cols=W)
|
||||
|
||||
clip_pos = _pixel_to_clip(pixel_pos, depth_map, params)
|
||||
eye_pos = _clip_to_eye(clip_pos, P)
|
||||
world_pos = _eye_to_world(eye_pos, V)
|
||||
|
||||
world_pos = world_pos[0:3, :] / world_pos[3, :]
|
||||
|
||||
if ordered_pts:
|
||||
H, W = depth_map.shape
|
||||
world_pos = world_pos.reshape(world_pos.shape[0], H, W)
|
||||
|
||||
return world_pos
|
||||
|
||||
|
||||
"""
|
||||
Optical flow functions
|
||||
"""
|
||||
|
||||
|
||||
def analytic_flow(img1, depth1, P, V1, V2, M1, M2, gel_depth, params):
|
||||
C, H, W = img1.shape
|
||||
depth_map = depth1.squeeze(0) if (len(depth1.shape) == 3) else depth1
|
||||
pixel_pos = _vectorize_pixel_coords(rows=H, cols=W, device=img1.device)
|
||||
|
||||
clip_pos = _pixel_to_clip(pixel_pos, depth_map, params)
|
||||
eye_pos = _clip_to_eye(clip_pos, P)
|
||||
world_pos = _eye_to_world(eye_pos, V1)
|
||||
obj_pos = _world_to_object(world_pos, M1)
|
||||
|
||||
world_pos = _object_to_world(obj_pos, M2)
|
||||
eye_pos = _world_to_eye(world_pos, V2)
|
||||
clip_pos = _eye_to_clip(eye_pos, P)
|
||||
pixel_pos_proj = _clip_to_pixel(clip_pos, (H, W), params)
|
||||
|
||||
pixel_flow = pixel_pos - pixel_pos_proj
|
||||
flow_map = pixel_flow.reshape(pixel_flow.shape[0], H, W)
|
||||
|
||||
# mask out background gel pixels
|
||||
mask_idxs = depth_map >= gel_depth
|
||||
flow_map[:, mask_idxs] = 0.0
|
||||
|
||||
return flow_map
|
||||
|
||||
|
||||
"""
|
||||
Normal to depth conversion / integration functions
|
||||
"""
|
||||
|
||||
|
||||
def _preproc_depth(img_depth, bg_mask=None):
|
||||
if bg_mask is not None:
|
||||
img_depth = mask_background(img_depth, bg_mask=bg_mask, bg_val=0.0)
|
||||
|
||||
return img_depth
|
||||
|
||||
|
||||
def _preproc_normal(img_normal, bg_mask=None):
|
||||
"""
|
||||
img_normal: lies in range [0, 1]
|
||||
"""
|
||||
|
||||
# 0.5 corresponds to 0
|
||||
img_normal = img_normal - 0.5
|
||||
|
||||
# normalize
|
||||
img_normal = img_normal / torch.linalg.norm(img_normal, dim=0)
|
||||
|
||||
# set background to have only z normals (flat, facing camera)
|
||||
if bg_mask is not None:
|
||||
img_normal[0:2, bg_mask] = 0.0
|
||||
img_normal[2, bg_mask] = 1.0
|
||||
|
||||
return img_normal
|
||||
|
||||
|
||||
def _depth_to_grad_depth(img_depth, bg_mask=None):
|
||||
gradx = ndimage.sobel(img_depth.cpu().detach().numpy(), axis=1, mode="constant")
|
||||
grady = ndimage.sobel(img_depth.cpu().detach().numpy(), axis=0, mode="constant")
|
||||
|
||||
gradx = torch.FloatTensor(gradx, device=img_depth.device)
|
||||
grady = torch.FloatTensor(grady, device=img_depth.device)
|
||||
|
||||
if bg_mask is not None:
|
||||
gradx = mask_background(gradx, bg_mask=bg_mask, bg_val=0.0)
|
||||
grady = mask_background(grady, bg_mask=bg_mask, bg_val=0.0)
|
||||
|
||||
return gradx, grady
|
||||
|
||||
|
||||
def _normal_to_grad_depth(img_normal, gel_width=1.0, gel_height=1.0, bg_mask=None):
|
||||
# Ref: https://stackoverflow.com/questions/34644101/calculate-surface-normals-from-depth-image-using-neighboring-pixels-cross-produc/34644939#34644939
|
||||
|
||||
EPS = 1e-1
|
||||
nz = torch.max(torch.tensor(EPS), img_normal[2, :])
|
||||
|
||||
dzdx = -(img_normal[0, :] / nz).squeeze()
|
||||
dzdy = -(img_normal[1, :] / nz).squeeze()
|
||||
|
||||
# taking out negative sign as we are computing gradient of depth not z
|
||||
# since z is pointed towards sensor, increase in z corresponds to decrease in depth
|
||||
# i.e., dz/dx = -ddepth/dx
|
||||
ddepthdx = -dzdx
|
||||
ddepthdy = -dzdy
|
||||
|
||||
# sim: pixel axis v points in opposite dxn of camera axis y
|
||||
ddepthdu = ddepthdx
|
||||
ddepthdv = -ddepthdy
|
||||
|
||||
gradx = ddepthdu # cols
|
||||
grady = ddepthdv # rows
|
||||
|
||||
# convert units from pixel to meters
|
||||
C, H, W = img_normal.shape
|
||||
gradx = gradx * (gel_width / W)
|
||||
grady = grady * (gel_height / H)
|
||||
|
||||
if bg_mask is not None:
|
||||
gradx = mask_background(gradx, bg_mask=bg_mask, bg_val=0.0)
|
||||
grady = mask_background(grady, bg_mask=bg_mask, bg_val=0.0)
|
||||
|
||||
return gradx, grady
|
||||
|
||||
|
||||
def _integrate_grad_depth(gradx, grady, boundary=None, bg_mask=None, max_depth=0.0):
|
||||
if boundary is None:
|
||||
boundary = torch.zeros((gradx.shape[0], gradx.shape[1]))
|
||||
|
||||
img_depth_recon = poisson_reconstruct(
|
||||
grady.cpu().detach().numpy(),
|
||||
gradx.cpu().detach().numpy(),
|
||||
boundary.cpu().detach().numpy(),
|
||||
)
|
||||
img_depth_recon = torch.tensor(
|
||||
img_depth_recon, device=gradx.device, dtype=torch.float32
|
||||
)
|
||||
|
||||
if bg_mask is not None:
|
||||
img_depth_recon = mask_background(img_depth_recon, bg_mask)
|
||||
|
||||
# after integration, img_depth_recon lies between 0. (bdry) and a -ve val (obj depth)
|
||||
# rescale to make max depth as gel depth and obj depth as +ve values
|
||||
img_depth_recon = max_clip(img_depth_recon, max_val=torch.tensor(0.0)) + max_depth
|
||||
|
||||
return img_depth_recon
|
||||
|
||||
|
||||
def depth_to_depth(img_depth, bg_mask=None, boundary=None, params=None):
|
||||
# preproc depth img
|
||||
img_depth = _preproc_depth(img_depth=img_depth.squeeze(), bg_mask=bg_mask)
|
||||
|
||||
# get grad depth
|
||||
gradx, grady = _depth_to_grad_depth(img_depth=img_depth.squeeze(), bg_mask=bg_mask)
|
||||
|
||||
# integrate grad depth
|
||||
img_depth_recon = _integrate_grad_depth(
|
||||
gradx, grady, boundary=boundary, bg_mask=bg_mask
|
||||
)
|
||||
|
||||
return img_depth_recon
|
||||
|
||||
|
||||
def normal_to_depth(
|
||||
img_normal,
|
||||
bg_mask=None,
|
||||
boundary=None,
|
||||
gel_width=0.02,
|
||||
gel_height=0.03,
|
||||
max_depth=0.02,
|
||||
):
|
||||
# preproc normal img
|
||||
img_normal = _preproc_normal(img_normal=img_normal, bg_mask=bg_mask)
|
||||
|
||||
# get grad depth
|
||||
gradx, grady = _normal_to_grad_depth(
|
||||
img_normal=img_normal,
|
||||
gel_width=gel_width,
|
||||
gel_height=gel_height,
|
||||
bg_mask=bg_mask,
|
||||
)
|
||||
|
||||
# integrate grad depth
|
||||
img_depth_recon = _integrate_grad_depth(
|
||||
gradx, grady, boundary=boundary, bg_mask=bg_mask, max_depth=max_depth
|
||||
)
|
||||
|
||||
return img_depth_recon
|
||||
|
||||
|
||||
"""
|
||||
3D registration functions
|
||||
"""
|
||||
|
||||
|
||||
def _fpfh(pcd, normals):
|
||||
pcd.normals = o3d.utility.Vector3dVector(normals)
|
||||
pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature(
|
||||
pcd, o3d.geometry.KDTreeSearchParamHybrid(radius=0.3, max_nn=64)
|
||||
)
|
||||
return pcd_fpfh
|
||||
|
||||
|
||||
def _fast_global_registration(source, target, source_fpfh, target_fpfh):
|
||||
distance_threshold = 0.01
|
||||
result = o3d.pipelines.registration.registration_fast_based_on_feature_matching(
|
||||
source,
|
||||
target,
|
||||
source_fpfh,
|
||||
target_fpfh,
|
||||
o3d.pipelines.registration.FastGlobalRegistrationOption(
|
||||
maximum_correspondence_distance=distance_threshold
|
||||
),
|
||||
)
|
||||
|
||||
transformation = result.transformation
|
||||
metrics = [result.fitness, result.inlier_rmse, result.correspondence_set]
|
||||
|
||||
return transformation, metrics
|
||||
|
||||
|
||||
def fgr(source, target, src_normals, tgt_normals):
|
||||
source_fpfh = _fpfh(source, src_normals)
|
||||
target_fpfh = _fpfh(target, tgt_normals)
|
||||
transformation, metrics = _fast_global_registration(
|
||||
source=source, target=target, source_fpfh=source_fpfh, target_fpfh=target_fpfh
|
||||
)
|
||||
return transformation, metrics
|
||||
|
||||
|
||||
def icp(source, target, T_init=np.eye(4), mcd=0.1, max_iter=50, type="point_to_plane"):
|
||||
if type == "point_to_point":
|
||||
result = o3d.pipelines.registration.registration_icp(
|
||||
source=source,
|
||||
target=target,
|
||||
max_correspondence_distance=mcd,
|
||||
init=T_init,
|
||||
estimation_method=o3d.pipelines.registration.TransformationEstimationPointToPoint(),
|
||||
criteria=o3d.pipelines.registration.ICPConvergenceCriteria(
|
||||
max_iteration=max_iter
|
||||
),
|
||||
)
|
||||
else:
|
||||
result = o3d.pipelines.registration.registration_icp(
|
||||
source=source,
|
||||
target=target,
|
||||
max_correspondence_distance=mcd,
|
||||
init=T_init,
|
||||
estimation_method=o3d.pipelines.registration.TransformationEstimationPointToPlane(),
|
||||
criteria=o3d.pipelines.registration.ICPConvergenceCriteria(
|
||||
max_iteration=max_iter
|
||||
),
|
||||
)
|
||||
|
||||
transformation = result.transformation
|
||||
metrics = [result.fitness, result.inlier_rmse, result.correspondence_set]
|
||||
|
||||
return transformation, metrics
|
||||
|
||||
|
||||
"""
|
||||
Open3D helper functions
|
||||
"""
|
||||
|
||||
|
||||
def remove_outlier_pts(points3d, nb_neighbors=20, std_ratio=10.0, vis=False):
|
||||
points3d_np = (
|
||||
points3d.cpu().detach().numpy() if torch.is_tensor(points3d) else points3d
|
||||
)
|
||||
|
||||
cloud = o3d.geometry.PointCloud()
|
||||
cloud.points = copy.deepcopy(o3d.utility.Vector3dVector(points3d_np.transpose()))
|
||||
cloud_filt, ind_filt = cloud.remove_statistical_outlier(
|
||||
nb_neighbors=nb_neighbors, std_ratio=std_ratio
|
||||
)
|
||||
|
||||
if vis:
|
||||
visualize_inlier_outlier(cloud, ind_filt)
|
||||
|
||||
points3d_filt = np.asarray(cloud_filt.points).transpose()
|
||||
points3d_filt = (
|
||||
torch.tensor(points3d_filt) if torch.is_tensor(points3d) else points3d_filt
|
||||
)
|
||||
|
||||
return points3d_filt
|
||||
|
||||
|
||||
def init_points_to_clouds(clouds, points3d, colors=None):
|
||||
for idx, cloud in enumerate(clouds):
|
||||
points3d_np = (
|
||||
points3d[idx].cpu().detach().numpy()
|
||||
if torch.is_tensor(points3d[idx])
|
||||
else points3d[idx]
|
||||
)
|
||||
cloud.points = copy.deepcopy(
|
||||
o3d.utility.Vector3dVector(points3d_np.transpose())
|
||||
)
|
||||
if colors is not None:
|
||||
cloud.paint_uniform_color(colors[idx])
|
||||
|
||||
return clouds
|
||||
81
digit_depth/third_party/poisson.py
vendored
Normal file
81
digit_depth/third_party/poisson.py
vendored
Normal file
@@ -0,0 +1,81 @@
|
||||
"""
|
||||
poisson_reconstruct.py
|
||||
Fast Poisson Reconstruction in Python
|
||||
|
||||
Copyright (c) 2014 Jack Doerner
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
"""
|
||||
|
||||
import copy
|
||||
import math
|
||||
|
||||
import numpy
|
||||
import scipy
|
||||
import scipy.fftpack
|
||||
|
||||
|
||||
def poisson_reconstruct(grady, gradx, boundarysrc):
|
||||
# Thanks to Dr. Ramesh Raskar for providing the original matlab code from which this is derived
|
||||
# Dr. Raskar's version is available here: http://web.media.mit.edu/~raskar/photo/code.pdf
|
||||
|
||||
# Laplacian
|
||||
gyy = grady[1:, :-1] - grady[:-1, :-1]
|
||||
gxx = gradx[:-1, 1:] - gradx[:-1, :-1]
|
||||
f = numpy.zeros(boundarysrc.shape)
|
||||
f[:-1, 1:] += gxx
|
||||
f[1:, :-1] += gyy
|
||||
|
||||
# Boundary image
|
||||
boundary = copy.deepcopy(boundarysrc) # .copy()
|
||||
boundary[1:-1, 1:-1] = 0
|
||||
|
||||
# Subtract boundary contribution
|
||||
f_bp = (
|
||||
-4 * boundary[1:-1, 1:-1]
|
||||
+ boundary[1:-1, 2:]
|
||||
+ boundary[1:-1, 0:-2]
|
||||
+ boundary[2:, 1:-1]
|
||||
+ boundary[0:-2, 1:-1]
|
||||
)
|
||||
f = f[1:-1, 1:-1] - f_bp
|
||||
|
||||
# Discrete Sine Transform
|
||||
tt = scipy.fftpack.dst(f, norm="ortho")
|
||||
fsin = scipy.fftpack.dst(tt.T, norm="ortho").T
|
||||
|
||||
# Eigenvalues
|
||||
(x, y) = numpy.meshgrid(
|
||||
range(1, f.shape[1] + 1), range(1, f.shape[0] + 1), copy=True
|
||||
)
|
||||
denom = (2 * numpy.cos(math.pi * x / (f.shape[1] + 2)) - 2) + (
|
||||
2 * numpy.cos(math.pi * y / (f.shape[0] + 2)) - 2
|
||||
)
|
||||
|
||||
f = fsin / denom
|
||||
|
||||
# Inverse Discrete Sine Transform
|
||||
tt = scipy.fftpack.idst(f, norm="ortho")
|
||||
img_tt = scipy.fftpack.idst(tt.T, norm="ortho").T
|
||||
|
||||
# New center + old boundary
|
||||
result = copy.deepcopy(boundary)
|
||||
result[1:-1, 1:-1] = img_tt
|
||||
|
||||
return result
|
||||
372
digit_depth/third_party/vis_utils.py
vendored
Normal file
372
digit_depth/third_party/vis_utils.py
vendored
Normal file
@@ -0,0 +1,372 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
|
||||
import copy
|
||||
import logging
|
||||
import time
|
||||
import types
|
||||
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
import torch
|
||||
from attrdict import AttrDict
|
||||
from matplotlib.patches import Circle, Rectangle
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
"""
|
||||
Open3d visualization functions
|
||||
"""
|
||||
|
||||
|
||||
class Visualizer3d:
|
||||
def __init__(self, base_path="", view_params=None, tsleep=0.01):
|
||||
self.vis = o3d.visualization.VisualizerWithKeyCallback()
|
||||
self.vis.create_window(top=0, left=750, width=1080, height=1080)
|
||||
self.tsleep = tsleep
|
||||
|
||||
self.base_path = base_path
|
||||
|
||||
self.view_params = AttrDict(
|
||||
{
|
||||
"fov": 0,
|
||||
"front": [0.0, 0.0, 0.0],
|
||||
"lookat": [0.0, 0.0, 0.0],
|
||||
"up": [0.0, 0.0, 0.0],
|
||||
"zoom": 0.5,
|
||||
}
|
||||
)
|
||||
if view_params is not None:
|
||||
self.view_params = view_params
|
||||
|
||||
self._init_options()
|
||||
|
||||
def _init_options(self):
|
||||
opt = self.vis.get_render_option()
|
||||
opt.show_coordinate_frame = True
|
||||
opt.background_color = np.asarray([0.6, 0.6, 0.6])
|
||||
|
||||
# pause option
|
||||
self.paused = types.SimpleNamespace()
|
||||
self.paused.value = False
|
||||
self.vis.register_key_action_callback(
|
||||
ord("P"),
|
||||
lambda a, b, c: b == 1
|
||||
or setattr(self.paused, "value", not self.paused.value),
|
||||
)
|
||||
|
||||
def _init_geom_cloud(self):
|
||||
return o3d.geometry.PointCloud()
|
||||
|
||||
def _init_geom_frame(self, frame_size=0.01, frame_origin=[0, 0, 0]):
|
||||
return o3d.geometry.TriangleMesh.create_coordinate_frame(
|
||||
size=frame_size, origin=frame_origin
|
||||
)
|
||||
|
||||
def _init_geom_mesh(self, mesh_name, color=None, wireframe=False):
|
||||
mesh = o3d.io.read_triangle_mesh(
|
||||
f"{self.base_path}/local/resources/meshes/{mesh_name}"
|
||||
)
|
||||
mesh.compute_vertex_normals()
|
||||
|
||||
if wireframe:
|
||||
mesh = o3d.geometry.LineSet.create_from_triangle_mesh(mesh)
|
||||
if color is not None:
|
||||
mesh.paint_uniform_color(color)
|
||||
|
||||
return mesh
|
||||
|
||||
def init_geometry(
|
||||
self,
|
||||
geom_type,
|
||||
num_items=1,
|
||||
sizes=None,
|
||||
file_names=None,
|
||||
colors=None,
|
||||
wireframes=None,
|
||||
):
|
||||
geom_list = []
|
||||
for i in range(0, num_items):
|
||||
|
||||
if geom_type == "cloud":
|
||||
geom = self._init_geom_cloud()
|
||||
elif geom_type == "frame":
|
||||
frame_size = sizes[i] if sizes is not None else 0.001
|
||||
geom = self._init_geom_frame(frame_size=frame_size)
|
||||
elif geom_type == "mesh":
|
||||
color = colors[i] if colors is not None else None
|
||||
wireframe = wireframes[i] if wireframes is not None else False
|
||||
geom = self._init_geom_mesh(file_names[i], color, wireframe)
|
||||
else:
|
||||
log.error(
|
||||
f"[Visualizer3d::init_geometry] geom_type {geom_type} not found."
|
||||
)
|
||||
|
||||
geom_list.append(geom)
|
||||
|
||||
return geom_list
|
||||
|
||||
def add_geometry(self, geom_list):
|
||||
|
||||
if geom_list is None:
|
||||
return
|
||||
|
||||
for geom in geom_list:
|
||||
self.vis.add_geometry(geom)
|
||||
|
||||
def remove_geometry(self, geom_list, reset_bounding_box=False):
|
||||
|
||||
if geom_list is None:
|
||||
return
|
||||
|
||||
for geom in geom_list:
|
||||
self.vis.remove_geometry(geom, reset_bounding_box=reset_bounding_box)
|
||||
|
||||
def update_geometry(self, geom_list):
|
||||
for geom in geom_list:
|
||||
self.vis.update_geometry(geom)
|
||||
|
||||
def set_view(self):
|
||||
ctr = self.vis.get_view_control()
|
||||
ctr.change_field_of_view(self.view_params.fov)
|
||||
ctr.set_front(self.view_params.front)
|
||||
ctr.set_lookat(self.view_params.lookat)
|
||||
ctr.set_up(self.view_params.up)
|
||||
ctr.set_zoom(self.view_params.zoom)
|
||||
|
||||
def set_view_cam(self, T):
|
||||
ctr = self.vis.get_view_control()
|
||||
cam = ctr.convert_to_pinhole_camera_parameters()
|
||||
cam.extrinsic = T
|
||||
ctr.convert_from_pinhole_camera_parameters(cam)
|
||||
|
||||
def set_zoom(self):
|
||||
ctr = self.vis.get_view_control()
|
||||
ctr.set_zoom(1.5)
|
||||
|
||||
def rotate_view(self):
|
||||
ctr = self.vis.get_view_control()
|
||||
ctr.rotate(10.0, -0.0)
|
||||
|
||||
def pan_scene(self, max=300):
|
||||
for i in range(0, max):
|
||||
self.rotate_view()
|
||||
self.render()
|
||||
|
||||
def render(self, T=None):
|
||||
|
||||
if T is not None:
|
||||
self.set_view_cam(T)
|
||||
else:
|
||||
self.set_view()
|
||||
|
||||
self.vis.poll_events()
|
||||
self.vis.update_renderer()
|
||||
time.sleep(self.tsleep)
|
||||
|
||||
def transform_geometry_absolute(self, transform_list, geom_list):
|
||||
for idx, geom in enumerate(geom_list):
|
||||
T = transform_list[idx]
|
||||
geom.transform(T)
|
||||
|
||||
def transform_geometry_relative(
|
||||
self, transform_prev_list, transform_curr_list, geom_list
|
||||
):
|
||||
for idx, geom in enumerate(geom_list):
|
||||
T_prev = transform_prev_list[idx]
|
||||
T_curr = transform_curr_list[idx]
|
||||
|
||||
# a. rotate R1^{-1}*R2 about center t1
|
||||
geom.rotate(
|
||||
torch.matmul(torch.inverse(T_prev[0:3, 0:3]), T_curr[0:3, 0:3]),
|
||||
center=(T_prev[0, -1], T_prev[1, -1], T_prev[2, -1]),
|
||||
)
|
||||
|
||||
# b. translate by t2 - t1
|
||||
geom.translate(
|
||||
(
|
||||
T_curr[0, -1] - T_prev[0, -1],
|
||||
T_curr[1, -1] - T_prev[1, -1],
|
||||
T_curr[2, -1] - T_prev[2, -1],
|
||||
)
|
||||
)
|
||||
|
||||
def clear_geometries(self):
|
||||
self.vis.clear_geometries()
|
||||
|
||||
def destroy(self):
|
||||
self.vis.destroy_window()
|
||||
|
||||
|
||||
def visualize_registration(source, target, transformation, vis3d=None, colors=None):
|
||||
source_copy = copy.deepcopy(source)
|
||||
target_copy = copy.deepcopy(target)
|
||||
|
||||
source_copy.transform(transformation)
|
||||
|
||||
clouds = [target_copy, source_copy]
|
||||
|
||||
if colors is not None:
|
||||
clouds[0].paint_uniform_color(colors[1])
|
||||
clouds[1].paint_uniform_color(colors[0])
|
||||
|
||||
vis3d.add_geometry(clouds)
|
||||
vis3d.render()
|
||||
vis3d.remove_geometry(clouds)
|
||||
|
||||
|
||||
def visualize_geometries_o3d(
|
||||
vis3d, clouds=None, frames=None, meshes=None, transforms=None
|
||||
):
|
||||
if meshes is not None:
|
||||
meshes = [copy.deepcopy(mesh) for mesh in meshes]
|
||||
if transforms is not None:
|
||||
vis3d.transform_geometry_absolute(transforms, meshes)
|
||||
|
||||
if frames is not None:
|
||||
frames = [copy.deepcopy(frame) for frame in frames]
|
||||
if transforms is not None:
|
||||
vis3d.transform_geometry_absolute(transforms, frames)
|
||||
|
||||
if clouds is not None:
|
||||
vis3d.add_geometry(clouds)
|
||||
if meshes is not None:
|
||||
vis3d.add_geometry(meshes)
|
||||
if frames is not None:
|
||||
vis3d.add_geometry(frames)
|
||||
|
||||
vis3d.render()
|
||||
|
||||
if clouds is not None:
|
||||
vis3d.remove_geometry(clouds)
|
||||
if meshes is not None:
|
||||
vis3d.remove_geometry(meshes)
|
||||
if frames is not None:
|
||||
vis3d.remove_geometry(frames)
|
||||
|
||||
|
||||
def visualize_inlier_outlier(cloud, ind):
|
||||
inlier_cloud = cloud.select_by_index(ind)
|
||||
outlier_cloud = cloud.select_by_index(ind, invert=True)
|
||||
|
||||
print("Showing outliers (red) and inliers (gray): ")
|
||||
outlier_cloud.paint_uniform_color([1, 0, 0])
|
||||
inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8])
|
||||
o3d.visualization.draw_geometries(
|
||||
[inlier_cloud, outlier_cloud],
|
||||
zoom=0.3412,
|
||||
front=[0.4257, -0.2125, -0.8795],
|
||||
lookat=[2.6172, 2.0475, 1.532],
|
||||
up=[-0.0694, -0.9768, 0.2024],
|
||||
)
|
||||
|
||||
|
||||
"""
|
||||
Optical flow visualization functions
|
||||
"""
|
||||
|
||||
|
||||
def flow_to_color(flow_uv, cvt=cv2.COLOR_HSV2BGR):
|
||||
hsv = np.zeros((flow_uv.shape[0], flow_uv.shape[1], 3), dtype=np.uint8)
|
||||
hsv[:, :, 0] = 255
|
||||
hsv[:, :, 1] = 255
|
||||
mag, ang = cv2.cartToPolar(flow_uv[..., 0], flow_uv[..., 1])
|
||||
hsv[..., 0] = ang * 180 / np.pi / 2
|
||||
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
|
||||
flow_color = cv2.cvtColor(hsv, cvt)
|
||||
|
||||
return flow_color
|
||||
|
||||
|
||||
def flow_to_arrows(img, flow, step=8):
|
||||
img = copy.deepcopy(img)
|
||||
# img = (255 * img).astype(np.uint8)
|
||||
|
||||
h, w = img.shape[:2]
|
||||
y, x = np.mgrid[step / 2 : h : step, step / 2 : w : step].reshape(2, -1).astype(int)
|
||||
fx, fy = 5.0 * flow[y, x].T
|
||||
lines = np.vstack([x, y, x + fx, y + fy]).T.reshape(-1, 2, 2)
|
||||
lines = np.int32(lines + 0.5)
|
||||
cv2.polylines(img, lines, 0, color=(0, 255, 0), thickness=1)
|
||||
for (x1, y1), (x2, y2) in lines:
|
||||
cv2.circle(img, (x1, y1), 1, (0, 255, 0), -1)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
def depth_to_color(depth):
|
||||
gray = (
|
||||
np.clip((depth - depth.min()) / (depth.max() - depth.min()), 0, 1) * 255
|
||||
).astype(np.uint8)
|
||||
return cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
|
||||
|
||||
|
||||
def visualize_flow_cv2(
|
||||
img1, img2, flow_arrow=None, flow_color=None, win_size=(360, 360)
|
||||
):
|
||||
img_disp1 = np.concatenate([img1, img2], axis=1)
|
||||
cv2.namedWindow("img1, img2", cv2.WINDOW_NORMAL)
|
||||
cv2.resizeWindow("img1, img2", 2 * win_size[0], win_size[1])
|
||||
cv2.imshow("img1, img2", img_disp1)
|
||||
|
||||
if flow_arrow is not None:
|
||||
cv2.namedWindow("flow_arrow", cv2.WINDOW_NORMAL)
|
||||
cv2.resizeWindow("flow_arrow", win_size[0], win_size[1])
|
||||
cv2.imshow("flow_arrow", flow_arrow)
|
||||
|
||||
if flow_color is not None:
|
||||
cv2.namedWindow("flow_color", cv2.WINDOW_NORMAL)
|
||||
cv2.resizeWindow("flow_color", win_size[0], win_size[1])
|
||||
cv2.imshow("flow_color", flow_color)
|
||||
|
||||
cv2.waitKey(300)
|
||||
|
||||
|
||||
"""
|
||||
General visualization functions
|
||||
"""
|
||||
|
||||
|
||||
def draw_rectangle(
|
||||
center_x,
|
||||
center_y,
|
||||
size_x,
|
||||
size_y,
|
||||
ang=0.0,
|
||||
edgecolor="dimgray",
|
||||
facecolor=None,
|
||||
linewidth=2,
|
||||
):
|
||||
R = np.array([[np.cos(ang), -np.sin(ang)], [np.sin(ang), np.cos(ang)]])
|
||||
offset = np.matmul(R, np.array([[0.5 * size_x], [0.5 * size_y]]))
|
||||
anchor_x = center_x - offset[0]
|
||||
anchor_y = center_y - offset[1]
|
||||
rect = Rectangle(
|
||||
(anchor_x, anchor_y),
|
||||
size_x,
|
||||
size_y,
|
||||
angle=(np.rad2deg(ang)),
|
||||
facecolor=facecolor,
|
||||
edgecolor=edgecolor,
|
||||
linewidth=linewidth,
|
||||
)
|
||||
plt.gca().add_patch(rect)
|
||||
|
||||
|
||||
def draw_circle(center_x, center_y, radius):
|
||||
circle = Circle((center_x, center_y), color="dimgray", radius=radius)
|
||||
plt.gca().add_patch(circle)
|
||||
|
||||
|
||||
def visualize_imgs(fig, axs, img_list, titles=None, cmap=None):
|
||||
for idx, img in enumerate(img_list):
|
||||
|
||||
if img is None:
|
||||
continue
|
||||
|
||||
im = axs[idx].imshow(img, cmap=cmap)
|
||||
if cmap is not None:
|
||||
fig.colorbar(im, ax=axs[idx])
|
||||
if titles is not None:
|
||||
axs[idx].set_title(titles[idx])
|
||||
2
digit_depth/train/__init__.py
Normal file
2
digit_depth/train/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .color2normal_dataset import Color2NormalDataset
|
||||
from .mlp_model import MLP
|
||||
21
digit_depth/train/color2normal_dataset.py
Normal file
21
digit_depth/train/color2normal_dataset.py
Normal file
@@ -0,0 +1,21 @@
|
||||
import pandas as pd
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
|
||||
class Color2NormalDataset(Dataset):
|
||||
def __init__(self, csv):
|
||||
self.data = pd.read_csv(csv)
|
||||
def __len__(self):
|
||||
return self.data['X'].count()
|
||||
|
||||
def __getitem__(self,idx):
|
||||
x = self.data['X'][idx]/120
|
||||
y = self.data['Y'][idx]/160
|
||||
r = self.data['R'][idx]/255
|
||||
g = self.data['G'][idx]/255
|
||||
b = self.data['B'][idx]/255
|
||||
nx = self.data['Nx'][idx]/255
|
||||
ny = self.data['Ny'][idx]/255
|
||||
nz= self.data['Nz'][idx]/255
|
||||
return torch.tensor((x, y, r, g, b), dtype=torch.float32), torch.tensor((nx, ny, nz), dtype=torch.float32)
|
||||
27
digit_depth/train/mlp_model.py
Normal file
27
digit_depth/train/mlp_model.py
Normal file
@@ -0,0 +1,27 @@
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
dropout_p = 0.05
|
||||
|
||||
def __init__(
|
||||
self, input_size=5, output_size=3, hidden_size=32):
|
||||
super().__init__()
|
||||
|
||||
self.fc1 = nn.Linear(input_size, hidden_size)
|
||||
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.fc3 = nn.Linear(hidden_size, hidden_size)
|
||||
self.fc4 = nn.Linear(hidden_size, output_size)
|
||||
self.drop = nn.Dropout(p=self.dropout_p)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.drop(x)
|
||||
x = F.relu(self.fc2(x))
|
||||
x = self.drop(x)
|
||||
x = self.fc3(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc4(x)
|
||||
return x
|
||||
49
digit_depth/train/prepost_mlp.py
Normal file
49
digit_depth/train/prepost_mlp.py
Normal file
@@ -0,0 +1,49 @@
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import copy
|
||||
seed = 42
|
||||
torch.seed = seed
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
|
||||
def preproc_mlp(image) -> torch.Tensor:
|
||||
""" Preprocess image for input to model.
|
||||
|
||||
Args: image: OpenCV image in BGR format
|
||||
Return: tensor of shape (R*C,5) where R=320 and C=240 for DIGIT images
|
||||
5-columns are: X,Y,R,G,B
|
||||
|
||||
"""
|
||||
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
img = img / 255.0
|
||||
xy_coords = np.flip(np.column_stack(np.where(np.all(img >= 0, axis=2))), axis=1)
|
||||
rgb = np.reshape(img, (np.prod(img.shape[:2]), 3))
|
||||
pixel_numbers = np.expand_dims(np.arange(1, xy_coords.shape[0] + 1), axis=1)
|
||||
value_base = np.hstack([pixel_numbers, xy_coords, rgb])
|
||||
df_base = pd.DataFrame(value_base, columns=['pixel_number', 'X', 'Y', 'R', 'G', 'B'])
|
||||
df_base['X'] = df_base['X'] / 240
|
||||
df_base['Y'] = df_base['Y'] / 320
|
||||
del df_base['pixel_number']
|
||||
test_tensor = torch.tensor(df_base[['X', 'Y', 'R', 'G', 'B']].values, dtype=torch.float32).to(device)
|
||||
return test_tensor
|
||||
|
||||
|
||||
def post_proc_mlp(model_output: torch.Tensor):
|
||||
""" Postprocess model output to get normal map.
|
||||
|
||||
Args: model_output: torch.Tensor of shape (1,3)
|
||||
Return: two torch.Tensor of shape (1,3)
|
||||
|
||||
"""
|
||||
test_np = model_output.reshape(320, 240, 3)
|
||||
normal = copy.deepcopy(test_np) # surface normal image
|
||||
test_np = torch.tensor(test_np,
|
||||
dtype=torch.float32) # convert to torch tensor for later processing in gradient computation
|
||||
test_np = test_np.permute(2, 0, 1) # swap axes to (3,320,240)
|
||||
test_np = test_np # convert to uint8 for visualization
|
||||
return test_np, normal
|
||||
|
||||
|
||||
Reference in New Issue
Block a user