This commit is contained in:
wxchen
2022-12-29 23:08:25 +08:00
commit 21ad625896
42 changed files with 2336 additions and 0 deletions

View File

@@ -0,0 +1,2 @@
from .color2normal_dataset import Color2NormalDataset
from .mlp_model import MLP

View File

@@ -0,0 +1,21 @@
import pandas as pd
import torch
from torch.utils.data import Dataset
class Color2NormalDataset(Dataset):
def __init__(self, csv):
self.data = pd.read_csv(csv)
def __len__(self):
return self.data['X'].count()
def __getitem__(self,idx):
x = self.data['X'][idx]/120
y = self.data['Y'][idx]/160
r = self.data['R'][idx]/255
g = self.data['G'][idx]/255
b = self.data['B'][idx]/255
nx = self.data['Nx'][idx]/255
ny = self.data['Ny'][idx]/255
nz= self.data['Nz'][idx]/255
return torch.tensor((x, y, r, g, b), dtype=torch.float32), torch.tensor((nx, ny, nz), dtype=torch.float32)

View File

@@ -0,0 +1,27 @@
import torch.nn as nn
import torch.nn.functional as F
class MLP(nn.Module):
dropout_p = 0.05
def __init__(
self, input_size=5, output_size=3, hidden_size=32):
super().__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, hidden_size)
self.fc4 = nn.Linear(hidden_size, output_size)
self.drop = nn.Dropout(p=self.dropout_p)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.drop(x)
x = F.relu(self.fc2(x))
x = self.drop(x)
x = self.fc3(x)
x = self.drop(x)
x = self.fc4(x)
return x

View File

@@ -0,0 +1,49 @@
import cv2
import torch
import numpy as np
import pandas as pd
import copy
seed = 42
torch.seed = seed
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def preproc_mlp(image) -> torch.Tensor:
""" Preprocess image for input to model.
Args: image: OpenCV image in BGR format
Return: tensor of shape (R*C,5) where R=320 and C=240 for DIGIT images
5-columns are: X,Y,R,G,B
"""
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
img = img / 255.0
xy_coords = np.flip(np.column_stack(np.where(np.all(img >= 0, axis=2))), axis=1)
rgb = np.reshape(img, (np.prod(img.shape[:2]), 3))
pixel_numbers = np.expand_dims(np.arange(1, xy_coords.shape[0] + 1), axis=1)
value_base = np.hstack([pixel_numbers, xy_coords, rgb])
df_base = pd.DataFrame(value_base, columns=['pixel_number', 'X', 'Y', 'R', 'G', 'B'])
df_base['X'] = df_base['X'] / 240
df_base['Y'] = df_base['Y'] / 320
del df_base['pixel_number']
test_tensor = torch.tensor(df_base[['X', 'Y', 'R', 'G', 'B']].values, dtype=torch.float32).to(device)
return test_tensor
def post_proc_mlp(model_output: torch.Tensor):
""" Postprocess model output to get normal map.
Args: model_output: torch.Tensor of shape (1,3)
Return: two torch.Tensor of shape (1,3)
"""
test_np = model_output.reshape(320, 240, 3)
normal = copy.deepcopy(test_np) # surface normal image
test_np = torch.tensor(test_np,
dtype=torch.float32) # convert to torch tensor for later processing in gradient computation
test_np = test_np.permute(2, 0, 1) # swap axes to (3,320,240)
test_np = test_np # convert to uint8 for visualization
return test_np, normal