import torch.nn as nn import torch.nn.functional as F class MLP(nn.Module): dropout_p = 0.05 def __init__( self, input_size=5, output_size=3, hidden_size=32): super().__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, hidden_size) self.fc4 = nn.Linear(hidden_size, output_size) self.drop = nn.Dropout(p=self.dropout_p) def forward(self, x): x = F.relu(self.fc1(x)) x = self.drop(x) x = F.relu(self.fc2(x)) x = self.drop(x) x = self.fc3(x) x = self.drop(x) x = self.fc4(x) return x