caculate the x y z of the object in the camera frame

copied:     src/maintain/scripts/test.py -> src/maintain/scripts/test copy.py
	modified:   src/maintain/scripts/test.py
	modified:   src/yolov5_ros/launch/yolov5.launch
	modified:   src/yolov5_ros/src/yolov5/best.pt
This commit is contained in:
wxchen
2023-05-06 14:36:12 +08:00
parent 0328f41e92
commit 11043f0a29
4 changed files with 143 additions and 58 deletions

View File

@@ -0,0 +1,93 @@
#! /home/wxchen/.conda/envs/gsmini/bin/python
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
import rospy
from sensor_msgs.msg import Image
import message_filters
from cv_bridge import CvBridge, CvBridgeError
import rospkg
MIN_MATCH_COUNT = 10
pkg_path = rospkg.RosPack().get_path('maintain')
rospy.loginfo(pkg_path)
img_template = cv.imread(pkg_path + '/scripts/tt.png',0)
def callback(rgb, depth):
rospy.loginfo("callback")
bridge = CvBridge()
# rospy.loginfo(rgb.header.stamp)
# rospy.loginfo(depth.header.stamp)
try:
rgb_image = bridge.imgmsg_to_cv2(rgb, 'bgr8')
depth_image = bridge.imgmsg_to_cv2(depth, '16UC1')
img_matcher = matcher(rgb_image)
cv.imshow("img_matcher", img_matcher)
cv.waitKey(1000)
except CvBridgeError as e:
print(e)
def matcher(img):
try:
# Initiate SIFT detector
sift = cv.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img_template,None)
kp2, des2 = sift.detectAndCompute(img,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
# store all the good matches as per Lowe's ratio test.
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w = img_template.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv.perspectiveTransform(pts,M)
roi = img[np.int32(dst)[0][0][1]:np.int32(dst)[2][0][1], np.int32(dst)[0][0][0]:np.int32(dst)[2][0][0]]
# roi = detect_black(roi)
# img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA)
else:
print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
return roi
except Exception as e:
print(e)
if __name__ == "__main__":
rospy.init_node("maintain")
rospy.loginfo("maintain task start ......")
rgb_sub = message_filters.Subscriber("/camera/color/image_raw", Image)
depth_sub = message_filters.Subscriber("/camera/aligned_depth_to_color/image_raw", Image)
ts = message_filters.TimeSynchronizer([rgb_sub, depth_sub], 1)
ts.registerCallback(callback)
rospy.spin()