diff --git a/src/maintain/scripts/maintain.py b/src/maintain/scripts/maintain.py
index 14d2f0f..392fcd7 100755
--- a/src/maintain/scripts/maintain.py
+++ b/src/maintain/scripts/maintain.py
@@ -1,4 +1,8 @@
+<<<<<<< HEAD
#! /home/da/miniconda3/envs/gsmini/bin/python
+=======
+#! /home/wxchen/.conda/envs/gsmini/bin/python
+>>>>>>> 68e8ba7901e9856d4a89304bc278ab76e8cc0a34
import rospy
import numpy as np
diff --git a/src/maintain/scripts/test copy.py b/src/maintain/scripts/test copy.py
deleted file mode 100755
index 104389a..0000000
--- a/src/maintain/scripts/test copy.py
+++ /dev/null
@@ -1,148 +0,0 @@
-#! /home/wxchen/.conda/envs/gsmini/bin/python
-
-import numpy as np
-import cv2 as cv
-from matplotlib import pyplot as plt
-import rospy
-from sensor_msgs.msg import Image
-import message_filters
-from cv_bridge import CvBridge, CvBridgeError
-import rospkg
-
-MIN_MATCH_COUNT = 10
-pkg_path = rospkg.RosPack().get_path('maintain')
-rospy.loginfo(pkg_path)
-img_template = cv.imread(pkg_path + '/scripts/tt.png',0)
-
-def callback(rgb, depth):
- rospy.loginfo("callback")
- bridge = CvBridge()
- # rospy.loginfo(rgb.header.stamp)
- # rospy.loginfo(depth.header.stamp)
- try:
- rgb_image = bridge.imgmsg_to_cv2(rgb, 'bgr8')
- depth_image = bridge.imgmsg_to_cv2(depth, '16UC1')
-
- img_matcher = matcher(rgb_image)
- cv.imshow("img_matcher", img_matcher)
- cv.waitKey(1000)
-
- except CvBridgeError as e:
- print(e)
-
-def matcher(img):
-
- try:
- # Initiate SIFT detector
- sift = cv.SIFT_create()
-
- # find the keypoints and descriptors with SIFT
- kp1, des1 = sift.detectAndCompute(img_template,None)
- kp2, des2 = sift.detectAndCompute(img,None)
-
- FLANN_INDEX_KDTREE = 1
- index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
- search_params = dict(checks = 50)
-
- flann = cv.FlannBasedMatcher(index_params, search_params)
- matches = flann.knnMatch(des1,des2,k=2)
-
- # store all the good matches as per Lowe's ratio test.
- good = []
- for m,n in matches:
- if m.distance < 0.7*n.distance:
- good.append(m)
-
- if len(good)>MIN_MATCH_COUNT:
- src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
- dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
-
- M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0)
- matchesMask = mask.ravel().tolist()
-
- h,w = img_template.shape
- pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
- dst = cv.perspectiveTransform(pts,M)
-
- roi = img[np.int32(dst)[0][0][1]:np.int32(dst)[2][0][1], np.int32(dst)[0][0][0]:np.int32(dst)[2][0][0]]
- # roi = detect_black(roi)
-
- # img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA)
- else:
- print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
-
- return roi
- except Exception as e:
- print(e)
-
-
-
-
-if __name__ == "__main__":
-
- rospy.init_node("maintain")
- rospy.loginfo("maintain task start ......")
-
- rgb_sub = message_filters.Subscriber("/camera/color/image_raw", Image)
- depth_sub = message_filters.Subscriber("/camera/aligned_depth_to_color/image_raw", Image)
-
- ts = message_filters.TimeSynchronizer([rgb_sub, depth_sub], 1)
- ts.registerCallback(callback)
-
-
- rospy.spin()
-
-
-# backup
-def calculate_image_edge_plane_normal(depth_roi):
- # Get the shape of the depth_roi
- height, width = depth_roi.shape
-
- # Get the edges of the ROI
- left_edge = [(0, y) for y in range(height)]
- right_edge = [(width-1, y) for y in range(height)]
- top_edge = [(x, 0) for x in range(width)]
- bottom_edge = [(x, height-1) for x in range(width)]
- edges = left_edge + right_edge + top_edge + bottom_edge
-
- # Create a 2D grid of X and Y coordinates
- X, Y = np.meshgrid(np.arange(width), np.arange(height))
-
- # Reshape the X, Y, and depth_roi arrays into one-dimensional arrays
- X = X.reshape(-1)
- Y = Y.reshape(-1)
- Z = depth_roi.reshape(-1)
-
- # Stack the X, Y, and depth_roi arrays vertically to create a 3D array of points in the form of [X, Y, Z]
- points = np.vstack([X, Y, Z]).T
-
- # Compute the mean depth value of the edges
- edge_depths = []
- for edge_point in edges:
- edge_depths.append(depth_roi[edge_point[1], edge_point[0]])
- mean_depth = np.mean(edge_depths)
-
- # Create a mask to extract the points on the edges
- mask = np.zeros_like(depth_roi, dtype=np.uint8)
- for edge_point in edges:
- mask[edge_point[1], edge_point[0]] = 1
- masked_depth_roi = depth_roi * mask
-
- # Extract the 3D coordinates of the points on the edges
- edge_points = []
- for edge_point in edges:
- edge_points.append([edge_point[0], edge_point[1], masked_depth_roi[edge_point[1], edge_point[0]]])
-
- # Convert the list of edge points to a numpy array
- edge_points = np.array(edge_points)
-
- # Shift the edge points so that the mean depth value is at the origin
- edge_points = edge_points - np.array([width/2, height/2, mean_depth])
-
- # Compute the singular value decomposition (SVD) of the edge points
- U, S, V = np.linalg.svd(edge_points)
-
- # Extract the normal vector of the plane that best fits the edge points from the right-singular vector corresponding to the smallest singular value
- normal = V[2]
-
- return normal
diff --git a/src/maintain/scripts/test.py b/src/maintain/scripts/test.py
index 606321e..450d673 100755
--- a/src/maintain/scripts/test.py
+++ b/src/maintain/scripts/test.py
@@ -60,6 +60,17 @@ def compute_plane_normal(box, depth, color_intrinsics):
normal += np.cross(v3, v4)
normal += np.cross(v4, v1)
normal /= np.linalg.norm(normal)
+ # 计算法向量相对于参考向量的旋转角度和旋转轴
+ ref_vector = np.array([0, 0, 1])
+ normal_vector = normal
+ angle = math.acos(np.dot(ref_vector, normal_vector) / (np.linalg.norm(ref_vector) * np.linalg.norm(normal_vector)))
+ axis = np.cross(ref_vector, normal_vector)
+ axis = axis / np.linalg.norm(axis)
+
+ # 将旋转角度和旋转轴转换为四元数
+ qx, qy, qz, qw = tf.transformations.quaternion_about_axis(angle, axis)
+ quaternion = [qx, qy, qz, qw]
+ return quaternion
# 计算法向量相对于参考向量的旋转角度和旋转轴
ref_vector = np.array([0, 0, 1])
@@ -73,30 +84,76 @@ def compute_plane_normal(box, depth, color_intrinsics):
quaternion = [qx, qy, qz, qw]
return quaternion
-def compute_normal_vector(p1, p2, p3, p4):
- # Compute two vectors in the plane
- v1 = np.array(p2) - np.array(p1)
- v2 = np.array(p3) - np.array(p1)
- # Compute the cross product of the two vectors to get the normal vector
- n = np.cross(v1, v2)
- # Compute the fourth point in the plane
- p4 = np.array(p4)
- # Check if the fourth point is on the same side of the plane as the origin
- if np.dot(n, p4 - np.array(p1)) < 0:
- n = -n
- # Normalize the normal vector to obtain a unit vector
- n = n / np.linalg.norm(n)
- # 计算法向量相对于参考向量的旋转角度和旋转轴
- ref_vector = np.array([0, 0, 1])
- normal_vector = n
- angle = math.acos(np.dot(ref_vector, normal_vector) / (np.linalg.norm(ref_vector) * np.linalg.norm(normal_vector)))
- axis = np.cross(ref_vector, normal_vector)
- axis = axis / np.linalg.norm(axis)
+def calculate_image_edge_plane_normal(depth_roi):
+ # Get the shape of the depth_roi
+ height, width = depth_roi.shape
+
+ # Get the edges of the ROI
+ left_edge = [(0, y) for y in range(height)]
+ right_edge = [(width-1, y) for y in range(height)]
+ top_edge = [(x, 0) for x in range(width)]
+ bottom_edge = [(x, height-1) for x in range(width)]
+ edges = left_edge + right_edge + top_edge + bottom_edge
- # 将旋转角度和旋转轴转换为四元数
- qx, qy, qz, qw = tf.transformations.quaternion_about_axis(angle, axis)
- quaternion = [qx, qy, qz, qw]
- return quaternion
+ # Create a 2D grid of X and Y coordinates
+ X, Y = np.meshgrid(np.arange(width), np.arange(height))
+
+ # Reshape the X, Y, and depth_roi arrays into one-dimensional arrays
+ X = X.reshape(-1)
+ Y = Y.reshape(-1)
+ Z = depth_roi.reshape(-1)
+
+ # Stack the X, Y, and depth_roi arrays vertically to create a 3D array of points in the form of [X, Y, Z]
+ points = np.vstack([X, Y, Z]).T
+
+ # Compute the mean depth value of the edges
+ edge_depths = []
+ for edge_point in edges:
+ edge_depths.append(depth_roi[edge_point[1], edge_point[0]])
+ mean_depth = np.mean(edge_depths)
+
+ # Create a mask to extract the points on the edges
+ mask = np.zeros_like(depth_roi, dtype=np.uint8)
+ for edge_point in edges:
+ mask[edge_point[1], edge_point[0]] = 1
+ masked_depth_roi = depth_roi * mask
+
+ # Extract the 3D coordinates of the points on the edges
+ edge_points = []
+ for edge_point in edges:
+ edge_points.append([edge_point[0], edge_point[1], masked_depth_roi[edge_point[1], edge_point[0]]])
+
+ # Convert the list of edge points to a numpy array
+ edge_points = np.array(edge_points)
+
+ # Shift the edge points so that the mean depth value is at the origin
+ edge_points = edge_points - np.array([width/2, height/2, mean_depth])
+
+ # Compute the singular value decomposition (SVD) of the edge points
+ U, S, V = np.linalg.svd(edge_points)
+
+ # Extract the normal vector of the plane that best fits the edge points from the right-singular vector corresponding to the smallest singular value
+ normal = V[2]
+
+ return normal
+
+# def compute_normal_vector(p1, p2, p3, p4):
+# # Compute two vectors in the plane
+# v1 = np.array(p2) - np.array(p1)
+# v2 = np.array(p3) - np.array(p1)
+# # Compute the cross product of the two vectors to get the normal vector
+# n = np.cross(v1, v2)
+# # Compute the fourth point in the plane
+# p4 = np.array(p4)
+# # Check if the fourth point is on the same side of the plane as the origin
+# if np.dot(n, p4 - np.array(p1)) < 0:
+# n = -n
+# # Normalize the normal vector to obtain a unit vector
+# n = n / np.linalg.norm(n)
+# theta = math.acos(n[2])
+# sin_theta_2 = math.sin(theta/2)
+# quaternion = [math.cos(theta/2), sin_theta_2 * n[0], sin_theta_2 * n[1], sin_theta_2 * n[2]]
+# return quaternion
def filter_quaternion(quat, quat_prev, alpha):
if quat_prev is None:
diff --git a/src/yolov5_ros/launch/yolov5.launch b/src/yolov5_ros/launch/yolov5.launch
index 7a85c2e..4c6539a 100644
--- a/src/yolov5_ros/launch/yolov5.launch
+++ b/src/yolov5_ros/launch/yolov5.launch
@@ -50,7 +50,8 @@
-
+
+