This commit is contained in:
wxchen
2023-05-09 21:32:49 +08:00

View File

@@ -14,8 +14,7 @@ import rospkg
# import open3d as o3d # import open3d as o3d
# from open3d_ros_helper import open3d_ros_helper as orh # from open3d_ros_helper import open3d_ros_helper as orh
import os import math
import sys
from rostopic import get_topic_type from rostopic import get_topic_type
from detection_msgs.msg import BoundingBox, BoundingBoxes from detection_msgs.msg import BoundingBox, BoundingBoxes
@@ -23,12 +22,50 @@ bridge = CvBridge()
annulus_width = 10 annulus_width = 10
# 2d to 3d # 2d to 3d
def computer_2d_3d(x, y, depth_array, color_intrinsics): def computer_2d_3d(x, y, depth_roi, color_intrinsics):
pz = depth_array[int(y), int(x)] / 1000 pz = depth_roi[int(y), int(x)] / 1000.0
px = (x - color_intrinsics[2]) * pz / color_intrinsics[0] px = (x - color_intrinsics[2]) * pz / color_intrinsics[0]
py = (y - color_intrinsics[5]) * pz / color_intrinsics[4] py = (y - color_intrinsics[5]) * pz / color_intrinsics[4]
return px, py, pz return px, py, pz
def compute_plane_normal(box, depth, color_intrinsics):
# 计算相机内参
fx = color_intrinsics[0]
fy = color_intrinsics[4]
cx = color_intrinsics[2]
cy = color_intrinsics[5]
# 计算矩形中心点坐标
x_center = (box[0] + box[2]) / 2
y_center = (box[1] + box[3]) / 2
z = depth[int(y_center), int(x_center)]
x = (x_center - cx) * z / fx
y = (y_center - cy) * z / fy
# 计算四个顶点坐标
x1 = (box[0] - cx) * z / fx
y1 = (box[1] - cy) * z / fy
x2 = (box[2] - cx) * z / fx
y2 = (box[1] - cy) * z / fy
x3 = (box[2] - cx) * z / fx
y3 = (box[3] - cy) * z / fy
x4 = (box[0] - cx) * z / fx
y4 = (box[3] - cy) * z / fy
# 计算矩形边缘向量
v1 = np.array([x2 - x1, y2 - y1, depth[int(box[1]), int(box[0])] - z])
v2 = np.array([x3 - x2, y3 - y2, depth[int(box[1]), int(box[2])] - z])
v3 = np.array([x4 - x3, y4 - y3, depth[int(box[3]), int(box[2])] - z])
v4 = np.array([x1 - x4, y1 - y4, depth[int(box[3]), int(box[0])] - z])
# 计算平面法向量
normal = np.cross(v1, v2)
normal += np.cross(v2, v3)
normal += np.cross(v3, v4)
normal += np.cross(v4, v1)
normal /= np.linalg.norm(normal)
# 将法向量转换为四元数表示
theta = math.acos(normal[2])
sin_theta_2 = math.sin(theta/2)
quaternion = [math.cos(theta/2), sin_theta_2 * normal[0], sin_theta_2 * normal[1], sin_theta_2 * normal[2]]
return quaternion
def compute_normal_vector(p1, p2, p3, p4): def compute_normal_vector(p1, p2, p3, p4):
# Compute two vectors in the plane # Compute two vectors in the plane
v1 = np.array(p2) - np.array(p1) v1 = np.array(p2) - np.array(p1)
@@ -42,7 +79,10 @@ def compute_normal_vector(p1, p2, p3, p4):
n = -n n = -n
# Normalize the normal vector to obtain a unit vector # Normalize the normal vector to obtain a unit vector
n = n / np.linalg.norm(n) n = n / np.linalg.norm(n)
return n theta = math.acos(n[2])
sin_theta_2 = math.sin(theta/2)
quaternion = [math.cos(theta/2), sin_theta_2 * n[0], sin_theta_2 * n[1], sin_theta_2 * n[2]]
return quaternion
def filter_quaternion(quat, quat_prev, alpha): def filter_quaternion(quat, quat_prev, alpha):
if quat_prev is None: if quat_prev is None:
@@ -74,29 +114,32 @@ def box_callback(box, depth, color_info):
x, y, z = computer_2d_3d(screw_x, screw_y, depth_array, color_intrinsics) x, y, z = computer_2d_3d(screw_x, screw_y, depth_array, color_intrinsics)
# rospy.loginfo("screw pose: x: %f, y: %f, z: %f", x, y, z) # rospy.loginfo("screw pose: x: %f, y: %f, z: %f", x, y, z)
# calculate normal direction of screw area # calculate normal direction of screw area
p1x, p1y, p1z = computer_2d_3d(boundingBox.xmin-annulus_width, boundingBox.ymin-annulus_width, depth_array, color_intrinsics) box = [boundingBox.ymin - annulus_width, boundingBox.xmin - annulus_width, boundingBox.ymax + annulus_width, boundingBox.xmax + annulus_width]
p2x, p2y, p2z = computer_2d_3d(boundingBox.xmax+annulus_width, boundingBox.ymin-annulus_width, depth_array, color_intrinsics) # p1x, p1y, p1z = computer_2d_3d(boundingBox.xmin-annulus_width, boundingBox.ymin-annulus_width, depth_array, color_intrinsics)
p3x, p3y, p3z = computer_2d_3d(boundingBox.xmax+annulus_width, boundingBox.ymax+annulus_width, depth_array, color_intrinsics) # p2x, p2y, p2z = computer_2d_3d(boundingBox.xmax+annulus_width, boundingBox.ymin-annulus_width, depth_array, color_intrinsics)
p4x, p4y, p4z = computer_2d_3d(boundingBox.xmin-annulus_width, boundingBox.ymax+annulus_width, depth_array, color_intrinsics) # p3x, p3y, p3z = computer_2d_3d(boundingBox.xmax+annulus_width, boundingBox.ymax+annulus_width, depth_array, color_intrinsics)
p1 = [p1x, p1y, p1z] # p4x, p4y, p4z = computer_2d_3d(boundingBox.xmin-annulus_width, boundingBox.ymax+annulus_width, depth_array, color_intrinsics)
p2 = [p2x, p2y, p2z] # p1 = [p1x, p1y, p1z]
p3 = [p3x, p3y, p3z] # p2 = [p2x, p2y, p2z]
p4 = [p4x, p4y, p4z] # p3 = [p3x, p3y, p3z]
normal = compute_normal_vector(p1, p2, p3, p4) # p4 = [p4x, p4y, p4z]
# normal_q = compute_normal_vector(p1, p2, p3, p4)
normal_q = compute_plane_normal(box, depth_array, color_intrinsics)
# annulus_roi = depth_array[boundingBox.ymin-annulus_width:boundingBox.ymax+annulus_width, boundingBox.xmin-annulus_width:boundingBox.xmax+annulus_width] # annulus_roi = depth_array[boundingBox.ymin-annulus_width:boundingBox.ymax+annulus_width, boundingBox.xmin-annulus_width:boundingBox.xmax+annulus_width]
# normal = calculate_image_edge_plane_normal(annulus_roi) # normal = calculate_image_edge_plane_normal(annulus_roi)
# print(normal) # print(normal)
# normal vector to quaternion # normal vector to quaternion
screw_quat = tf.transformations.quaternion_from_euler(0, 0, 0) screw_quat = tf.transformations.quaternion_from_euler(0, 0, 0)
screw_quat[0] = normal[0] screw_quat[0] = normal_q[0]
screw_quat[1] = normal[1] screw_quat[1] = normal_q[1]
screw_quat[2] = normal[2] screw_quat[2] = normal_q[2]
screw_quat[3] = 0 screw_quat[3] = normal_q[3]
# quaternion to euler # quaternion to euler
screw_euler = tf.transformations.euler_from_quaternion(screw_quat) screw_euler = tf.transformations.euler_from_quaternion(screw_quat)
screw_quat = tf.transformations.quaternion_from_euler(screw_euler[0], screw_euler[1], 0) screw_quat_zero_z = tf.transformations.quaternion_from_euler(screw_euler[0], screw_euler[1], 0)
# Apply low-pass filter to screw quaternion # Apply low-pass filter to screw quaternion