Update attitude calculation method
modified: src/maintain/scripts/test copy.py modified: src/maintain/scripts/test.py
This commit is contained in:
@@ -91,3 +91,58 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
|
|
||||||
rospy.spin()
|
rospy.spin()
|
||||||
|
|
||||||
|
|
||||||
|
# backup
|
||||||
|
def calculate_image_edge_plane_normal(depth_roi):
|
||||||
|
# Get the shape of the depth_roi
|
||||||
|
height, width = depth_roi.shape
|
||||||
|
|
||||||
|
# Get the edges of the ROI
|
||||||
|
left_edge = [(0, y) for y in range(height)]
|
||||||
|
right_edge = [(width-1, y) for y in range(height)]
|
||||||
|
top_edge = [(x, 0) for x in range(width)]
|
||||||
|
bottom_edge = [(x, height-1) for x in range(width)]
|
||||||
|
edges = left_edge + right_edge + top_edge + bottom_edge
|
||||||
|
|
||||||
|
# Create a 2D grid of X and Y coordinates
|
||||||
|
X, Y = np.meshgrid(np.arange(width), np.arange(height))
|
||||||
|
|
||||||
|
# Reshape the X, Y, and depth_roi arrays into one-dimensional arrays
|
||||||
|
X = X.reshape(-1)
|
||||||
|
Y = Y.reshape(-1)
|
||||||
|
Z = depth_roi.reshape(-1)
|
||||||
|
|
||||||
|
# Stack the X, Y, and depth_roi arrays vertically to create a 3D array of points in the form of [X, Y, Z]
|
||||||
|
points = np.vstack([X, Y, Z]).T
|
||||||
|
|
||||||
|
# Compute the mean depth value of the edges
|
||||||
|
edge_depths = []
|
||||||
|
for edge_point in edges:
|
||||||
|
edge_depths.append(depth_roi[edge_point[1], edge_point[0]])
|
||||||
|
mean_depth = np.mean(edge_depths)
|
||||||
|
|
||||||
|
# Create a mask to extract the points on the edges
|
||||||
|
mask = np.zeros_like(depth_roi, dtype=np.uint8)
|
||||||
|
for edge_point in edges:
|
||||||
|
mask[edge_point[1], edge_point[0]] = 1
|
||||||
|
masked_depth_roi = depth_roi * mask
|
||||||
|
|
||||||
|
# Extract the 3D coordinates of the points on the edges
|
||||||
|
edge_points = []
|
||||||
|
for edge_point in edges:
|
||||||
|
edge_points.append([edge_point[0], edge_point[1], masked_depth_roi[edge_point[1], edge_point[0]]])
|
||||||
|
|
||||||
|
# Convert the list of edge points to a numpy array
|
||||||
|
edge_points = np.array(edge_points)
|
||||||
|
|
||||||
|
# Shift the edge points so that the mean depth value is at the origin
|
||||||
|
edge_points = edge_points - np.array([width/2, height/2, mean_depth])
|
||||||
|
|
||||||
|
# Compute the singular value decomposition (SVD) of the edge points
|
||||||
|
U, S, V = np.linalg.svd(edge_points)
|
||||||
|
|
||||||
|
# Extract the normal vector of the plane that best fits the edge points from the right-singular vector corresponding to the smallest singular value
|
||||||
|
normal = V[2]
|
||||||
|
|
||||||
|
return normal
|
||||||
|
|||||||
@@ -11,8 +11,8 @@ from geometry_msgs.msg import PoseStamped, TransformStamped, Quaternion
|
|||||||
import message_filters
|
import message_filters
|
||||||
from cv_bridge import CvBridge, CvBridgeError
|
from cv_bridge import CvBridge, CvBridgeError
|
||||||
import rospkg
|
import rospkg
|
||||||
import open3d as o3d
|
# import open3d as o3d
|
||||||
from open3d_ros_helper import open3d_ros_helper as orh
|
# from open3d_ros_helper import open3d_ros_helper as orh
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
@@ -22,58 +22,27 @@ from detection_msgs.msg import BoundingBox, BoundingBoxes
|
|||||||
bridge = CvBridge()
|
bridge = CvBridge()
|
||||||
annulus_width = 10
|
annulus_width = 10
|
||||||
|
|
||||||
def calculate_image_edge_plane_normal(depth_roi):
|
# 2d to 3d
|
||||||
# Get the shape of the depth_roi
|
def computer_2d_3d(x, y, depth_roi, color_intrinsics):
|
||||||
height, width = depth_roi.shape
|
pz = np.mean(depth_roi) * 0.001
|
||||||
|
px = (x - color_intrinsics[2]) * pz / color_intrinsics[0]
|
||||||
|
py = (y - color_intrinsics[5]) * pz / color_intrinsics[4]
|
||||||
|
return px, py, pz
|
||||||
|
|
||||||
# Get the edges of the ROI
|
def compute_normal_vector(p1, p2, p3, p4):
|
||||||
left_edge = [(0, y) for y in range(height)]
|
# Compute two vectors in the plane
|
||||||
right_edge = [(width-1, y) for y in range(height)]
|
v1 = np.array(p2) - np.array(p1)
|
||||||
top_edge = [(x, 0) for x in range(width)]
|
v2 = np.array(p3) - np.array(p1)
|
||||||
bottom_edge = [(x, height-1) for x in range(width)]
|
# Compute the cross product of the two vectors to get the normal vector
|
||||||
edges = left_edge + right_edge + top_edge + bottom_edge
|
n = np.cross(v1, v2)
|
||||||
|
# Compute the fourth point in the plane
|
||||||
# Create a 2D grid of X and Y coordinates
|
p4 = np.array(p4)
|
||||||
X, Y = np.meshgrid(np.arange(width), np.arange(height))
|
# Check if the fourth point is on the same side of the plane as the origin
|
||||||
|
if np.dot(n, p4 - np.array(p1)) < 0:
|
||||||
# Reshape the X, Y, and depth_roi arrays into one-dimensional arrays
|
n = -n
|
||||||
X = X.reshape(-1)
|
# Normalize the normal vector to obtain a unit vector
|
||||||
Y = Y.reshape(-1)
|
n = n / np.linalg.norm(n)
|
||||||
Z = depth_roi.reshape(-1)
|
return n
|
||||||
|
|
||||||
# Stack the X, Y, and depth_roi arrays vertically to create a 3D array of points in the form of [X, Y, Z]
|
|
||||||
points = np.vstack([X, Y, Z]).T
|
|
||||||
|
|
||||||
# Compute the mean depth value of the edges
|
|
||||||
edge_depths = []
|
|
||||||
for edge_point in edges:
|
|
||||||
edge_depths.append(depth_roi[edge_point[1], edge_point[0]])
|
|
||||||
mean_depth = np.mean(edge_depths)
|
|
||||||
|
|
||||||
# Create a mask to extract the points on the edges
|
|
||||||
mask = np.zeros_like(depth_roi, dtype=np.uint8)
|
|
||||||
for edge_point in edges:
|
|
||||||
mask[edge_point[1], edge_point[0]] = 1
|
|
||||||
masked_depth_roi = depth_roi * mask
|
|
||||||
|
|
||||||
# Extract the 3D coordinates of the points on the edges
|
|
||||||
edge_points = []
|
|
||||||
for edge_point in edges:
|
|
||||||
edge_points.append([edge_point[0], edge_point[1], masked_depth_roi[edge_point[1], edge_point[0]]])
|
|
||||||
|
|
||||||
# Convert the list of edge points to a numpy array
|
|
||||||
edge_points = np.array(edge_points)
|
|
||||||
|
|
||||||
# Shift the edge points so that the mean depth value is at the origin
|
|
||||||
edge_points = edge_points - np.array([width/2, height/2, mean_depth])
|
|
||||||
|
|
||||||
# Compute the singular value decomposition (SVD) of the edge points
|
|
||||||
U, S, V = np.linalg.svd(edge_points)
|
|
||||||
|
|
||||||
# Extract the normal vector of the plane that best fits the edge points from the right-singular vector corresponding to the smallest singular value
|
|
||||||
normal = V[2]
|
|
||||||
|
|
||||||
return normal
|
|
||||||
|
|
||||||
def filter_quaternion(quat, quat_prev, alpha):
|
def filter_quaternion(quat, quat_prev, alpha):
|
||||||
if quat_prev is None:
|
if quat_prev is None:
|
||||||
@@ -86,43 +55,39 @@ def filter_quaternion(quat, quat_prev, alpha):
|
|||||||
quat_filtered = quat_filtered / np.linalg.norm(quat_filtered)
|
quat_filtered = quat_filtered / np.linalg.norm(quat_filtered)
|
||||||
return quat_filtered
|
return quat_filtered
|
||||||
|
|
||||||
|
|
||||||
def box_callback(box, depth, color_info):
|
def box_callback(box, depth, color_info):
|
||||||
try:
|
try:
|
||||||
color_intrinsics = color_info.K
|
color_intrinsics = color_info.K
|
||||||
depth_image = bridge.imgmsg_to_cv2(depth, '16UC1')
|
depth_image = bridge.imgmsg_to_cv2(depth, '16UC1')
|
||||||
|
# pc = orh.rospc_to_o3dpc(pc_msg)
|
||||||
|
|
||||||
# get the center of screw
|
# get the center of screw
|
||||||
boundingBox = box.bounding_boxes[0]
|
boundingBox = box.bounding_boxes[0]
|
||||||
screw_x = (boundingBox.xmax + boundingBox.xmin) / 2
|
screw_x = (boundingBox.xmax + boundingBox.xmin) / 2
|
||||||
screw_y = (boundingBox.ymax + boundingBox.ymin) / 2
|
screw_y = (boundingBox.ymax + boundingBox.ymin) / 2
|
||||||
# print(screw_x,screw_y)
|
# print(screw_x,screw_y)
|
||||||
|
|
||||||
|
|
||||||
depth_array = np.array(depth_image, dtype=np.float32)
|
depth_array = np.array(depth_image, dtype=np.float32)
|
||||||
depth_roi = depth_array[boundingBox.ymin:boundingBox.ymax, boundingBox.xmin:boundingBox.xmax]
|
depth_roi = depth_array[boundingBox.ymin:boundingBox.ymax, boundingBox.xmin:boundingBox.xmax]
|
||||||
|
|
||||||
z = np.mean(depth_roi) * 0.001
|
x, y, z = computer_2d_3d(screw_x, screw_y, depth_roi, color_intrinsics)
|
||||||
x = (screw_x - color_intrinsics[2]) * z / color_intrinsics[0]
|
|
||||||
y = (screw_y - color_intrinsics[5]) * z / color_intrinsics[4]
|
|
||||||
# rospy.loginfo("screw pose: x: %f, y: %f, z: %f", x, y, z)
|
# rospy.loginfo("screw pose: x: %f, y: %f, z: %f", x, y, z)
|
||||||
# calculate normal direction of screw area
|
# calculate normal direction of screw area
|
||||||
|
p1x, p1y, p1z = computer_2d_3d(boundingBox.xmin-annulus_width, boundingBox.ymin-annulus_width, depth_roi, color_intrinsics)
|
||||||
|
p2x, p2y, p2z = computer_2d_3d(boundingBox.xmax+annulus_width, boundingBox.ymin-annulus_width, depth_roi, color_intrinsics)
|
||||||
|
p3x, p3y, p3z = computer_2d_3d(boundingBox.xmax+annulus_width, boundingBox.ymax+annulus_width, depth_roi, color_intrinsics)
|
||||||
|
p4x, p4y, p4z = computer_2d_3d(boundingBox.xmin-annulus_width, boundingBox.ymax+annulus_width, depth_roi, color_intrinsics)
|
||||||
|
p1 = [p1x, p1y, p1z]
|
||||||
|
p2 = [p2x, p2y, p2z]
|
||||||
|
p3 = [p3x, p3y, p3z]
|
||||||
|
p4 = [p4x, p4y, p4z]
|
||||||
|
normal = compute_normal_vector(p1, p2, p3, p4)
|
||||||
|
|
||||||
annulus_roi = depth_array[boundingBox.ymin-annulus_width:boundingBox.ymax+annulus_width, boundingBox.xmin-annulus_width:boundingBox.xmax+annulus_width]
|
# annulus_roi = depth_array[boundingBox.ymin-annulus_width:boundingBox.ymax+annulus_width, boundingBox.xmin-annulus_width:boundingBox.xmax+annulus_width]
|
||||||
normal = calculate_image_edge_plane_normal(annulus_roi)
|
# normal = calculate_image_edge_plane_normal(annulus_roi)
|
||||||
print(normal)
|
# print(normal)
|
||||||
|
|
||||||
# publish screw pose
|
|
||||||
# screw_pose = PoseStamped()
|
|
||||||
# screw_pose.header.stamp = rospy.Time.now()
|
|
||||||
# screw_pose.header.frame_id = "camera_color_optical_frame"
|
|
||||||
# screw_pose.pose.position.x = x
|
|
||||||
# screw_pose.pose.position.y = y
|
|
||||||
# screw_pose.pose.position.z = z
|
|
||||||
# screw_pose.pose.orientation.x = 0
|
|
||||||
# screw_pose.pose.orientation.y = 0
|
|
||||||
# screw_pose.pose.orientation.z = 0
|
|
||||||
# screw_pose.pose.orientation.w = 1
|
|
||||||
|
|
||||||
# pose_pub.publish(screw_pose)
|
|
||||||
|
|
||||||
# normal vector to quaternion
|
# normal vector to quaternion
|
||||||
screw_quat = tf.transformations.quaternion_from_euler(0, 0, 0)
|
screw_quat = tf.transformations.quaternion_from_euler(0, 0, 0)
|
||||||
@@ -174,6 +139,7 @@ if __name__ == "__main__":
|
|||||||
box_sub = message_filters.Subscriber("/yolov5/detections", BoundingBoxes)
|
box_sub = message_filters.Subscriber("/yolov5/detections", BoundingBoxes)
|
||||||
depth_sub = message_filters.Subscriber("/camera/aligned_depth_to_color/image_raw", Image)
|
depth_sub = message_filters.Subscriber("/camera/aligned_depth_to_color/image_raw", Image)
|
||||||
color_info = message_filters.Subscriber("/camera/color/camera_info", CameraInfo)
|
color_info = message_filters.Subscriber("/camera/color/camera_info", CameraInfo)
|
||||||
|
# pc_sub = message_filters.Subscriber("/camera/depth/color/points", PointCloud2)
|
||||||
|
|
||||||
tf_broadcaster = tf2_ros.TransformBroadcaster()
|
tf_broadcaster = tf2_ros.TransformBroadcaster()
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user