Compare commits
4 Commits
67108c45aa
...
4d78759009
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4d78759009 | ||
|
|
47083e478d | ||
|
|
68e8ba7901 | ||
|
|
825af0226d |
@@ -1,4 +1,4 @@
|
||||
<launch>
|
||||
<node pkg="maintain" type="test.py" name="maintain" output="screen">
|
||||
<node pkg="maintain" type="maintain.py" name="maintain" output="screen">
|
||||
</node>
|
||||
</launch>
|
||||
|
||||
136
src/maintain/scripts/maintain.py
Executable file
136
src/maintain/scripts/maintain.py
Executable file
@@ -0,0 +1,136 @@
|
||||
#! /home/da/miniconda3/envs/gsmini/bin/python
|
||||
|
||||
import rospy
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
from sensor_msgs.msg import Image , CameraInfo, PointCloud2
|
||||
from detection_msgs.msg import BoundingBox, BoundingBoxes
|
||||
import sensor_msgs.point_cloud2 as pc2
|
||||
import cv_bridge
|
||||
from cv_bridge import CvBridge, CvBridgeError
|
||||
import cv2
|
||||
import tf2_ros
|
||||
import tf
|
||||
from geometry_msgs.msg import PoseStamped, TransformStamped
|
||||
|
||||
bridge = CvBridge()
|
||||
color_intrinsics = None
|
||||
cloud = None
|
||||
box = None
|
||||
d_width = 100
|
||||
|
||||
def camera_info_callback(msg):
|
||||
global color_intrinsics
|
||||
color_intrinsics = msg
|
||||
|
||||
def depth_image_callback(msg):
|
||||
global depth_image
|
||||
depth_image = bridge.imgmsg_to_cv2(msg, '16UC1')
|
||||
|
||||
def point_cloud_callback(msg):
|
||||
global cloud
|
||||
cloud = pc2.read_points(msg, field_names=("x", "y", "z"), skip_nans=True)
|
||||
|
||||
def bounding_boxes_callback(msg):
|
||||
global box
|
||||
for bounding_box in msg.bounding_boxes:
|
||||
# Assuming there's only one box, you can add a condition to filter the boxes if needed
|
||||
box = [bounding_box.xmin - d_width, bounding_box.ymin - d_width, bounding_box.xmax + d_width, bounding_box.ymax + d_width]
|
||||
|
||||
def main():
|
||||
rospy.init_node("plane_fitting_node")
|
||||
|
||||
rospy.Subscriber("/camera/color/camera_info", CameraInfo, camera_info_callback)
|
||||
rospy.Subscriber("/camera/aligned_depth_to_color/image_raw", Image, depth_image_callback)
|
||||
rospy.Subscriber("/camera/depth/color/points", PointCloud2, point_cloud_callback)
|
||||
rospy.Subscriber("/yolov5/detections", BoundingBoxes, bounding_boxes_callback)
|
||||
tf_broadcaster = tf2_ros.TransformBroadcaster()
|
||||
|
||||
plane_pub = rospy.Publisher("/plane_pose", PoseStamped, queue_size=10)
|
||||
|
||||
rate = rospy.Rate(10) # 10 Hz
|
||||
|
||||
while not rospy.is_shutdown():
|
||||
if color_intrinsics is not None and cloud is not None and box is not None:
|
||||
# Get the 3D points corresponding to the box
|
||||
fx, fy = color_intrinsics.K[0], color_intrinsics.K[4]
|
||||
cx, cy = color_intrinsics.K[2], color_intrinsics.K[5]
|
||||
points = []
|
||||
|
||||
center_x = (box[0] + box[2]) / 2
|
||||
center_y = (box[1] + box[3]) / 2
|
||||
|
||||
depth_array = np.array(depth_image, dtype=np.float32)
|
||||
pz = depth_array[int(center_y), int(center_x)] / 1000.0
|
||||
px = (center_x - color_intrinsics.K[2]) * pz / color_intrinsics.K[0]
|
||||
py = (center_y - color_intrinsics.K[5]) * pz / color_intrinsics.K[4]
|
||||
|
||||
rospy.loginfo("Center point: {}".format([px, py, pz]))
|
||||
|
||||
screw_point = None
|
||||
for x, y, z in cloud:
|
||||
if z != 0:
|
||||
u = int(np.round((x * fx) / z + cx))
|
||||
v = int(np.round((y * fy) / z + cy))
|
||||
if u == center_x and v == center_y:
|
||||
screw_point = [x, y, z]
|
||||
if u >= box[0] and u <= box[2] and v >= box[1] and v <= box[3]:
|
||||
points.append([x, y, z])
|
||||
points = np.array(points)
|
||||
|
||||
if px != 0 and py != 0 and pz != 0:
|
||||
|
||||
# rospy.loginfo("Screw point: {}".format(screw_point))
|
||||
|
||||
# Fit a plane to the points
|
||||
pcd = o3d.geometry.PointCloud()
|
||||
pcd.points = o3d.utility.Vector3dVector(points)
|
||||
plane_model, inliers = pcd.segment_plane(distance_threshold=0.02, ransac_n=3, num_iterations=100)
|
||||
[a, b, c, d] = plane_model
|
||||
|
||||
# Calculate the rotation between the plane normal and the Z axis
|
||||
normal = np.array([a, b, c])
|
||||
z_axis = np.array([0, 0, 1])
|
||||
cos_theta = np.dot(normal, z_axis) / (np.linalg.norm(normal) * np.linalg.norm(z_axis))
|
||||
theta = np.arccos(cos_theta)
|
||||
rotation_axis = np.cross(z_axis, normal)
|
||||
rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)
|
||||
quaternion = np.hstack((rotation_axis * np.sin(theta / 2), [np.cos(theta / 2)]))
|
||||
|
||||
|
||||
# Publish the plane pose
|
||||
# plane_pose = PoseStamped()
|
||||
# plane_pose.header.stamp = rospy.Time.now()
|
||||
# plane_pose.header.frame_id = "camera_color_optical_frame"
|
||||
# plane_pose.pose.position.x = screw_point[0]
|
||||
# plane_pose.pose.position.y = screw_point[1]
|
||||
# plane_pose.pose.position.z = -d / np.linalg.norm(normal)
|
||||
# plane_pose.pose.orientation.x = quaternion[0]
|
||||
# plane_pose.pose.orientation.y = quaternion[1]
|
||||
# plane_pose.pose.orientation.z = quaternion[2]
|
||||
# plane_pose.pose.orientation.w = quaternion[3]
|
||||
# plane_pub.publish(plane_pose)
|
||||
|
||||
# publish screw tf
|
||||
screw_tf = TransformStamped()
|
||||
screw_tf.header.stamp = rospy.Time.now()
|
||||
screw_tf.header.frame_id = "camera_color_optical_frame"
|
||||
screw_tf.child_frame_id = "screw"
|
||||
screw_tf.transform.translation.x = px
|
||||
screw_tf.transform.translation.y = py
|
||||
screw_tf.transform.translation.z = pz
|
||||
screw_tf.transform.rotation.x = quaternion[0]
|
||||
screw_tf.transform.rotation.y = quaternion[1]
|
||||
screw_tf.transform.rotation.z = quaternion[2]
|
||||
screw_tf.transform.rotation.w = quaternion[3]
|
||||
|
||||
tf_broadcaster.sendTransform(screw_tf)
|
||||
|
||||
|
||||
rate.sleep()
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
main()
|
||||
except rospy.ROSInterruptException:
|
||||
pass
|
||||
@@ -1,148 +0,0 @@
|
||||
#! /home/wxchen/.conda/envs/gsmini/bin/python
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
import rospy
|
||||
from sensor_msgs.msg import Image
|
||||
import message_filters
|
||||
from cv_bridge import CvBridge, CvBridgeError
|
||||
import rospkg
|
||||
|
||||
MIN_MATCH_COUNT = 10
|
||||
pkg_path = rospkg.RosPack().get_path('maintain')
|
||||
rospy.loginfo(pkg_path)
|
||||
img_template = cv.imread(pkg_path + '/scripts/tt.png',0)
|
||||
|
||||
def callback(rgb, depth):
|
||||
rospy.loginfo("callback")
|
||||
bridge = CvBridge()
|
||||
# rospy.loginfo(rgb.header.stamp)
|
||||
# rospy.loginfo(depth.header.stamp)
|
||||
try:
|
||||
rgb_image = bridge.imgmsg_to_cv2(rgb, 'bgr8')
|
||||
depth_image = bridge.imgmsg_to_cv2(depth, '16UC1')
|
||||
|
||||
img_matcher = matcher(rgb_image)
|
||||
cv.imshow("img_matcher", img_matcher)
|
||||
cv.waitKey(1000)
|
||||
|
||||
except CvBridgeError as e:
|
||||
print(e)
|
||||
|
||||
def matcher(img):
|
||||
|
||||
try:
|
||||
# Initiate SIFT detector
|
||||
sift = cv.SIFT_create()
|
||||
|
||||
# find the keypoints and descriptors with SIFT
|
||||
kp1, des1 = sift.detectAndCompute(img_template,None)
|
||||
kp2, des2 = sift.detectAndCompute(img,None)
|
||||
|
||||
FLANN_INDEX_KDTREE = 1
|
||||
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
|
||||
search_params = dict(checks = 50)
|
||||
|
||||
flann = cv.FlannBasedMatcher(index_params, search_params)
|
||||
matches = flann.knnMatch(des1,des2,k=2)
|
||||
|
||||
# store all the good matches as per Lowe's ratio test.
|
||||
good = []
|
||||
for m,n in matches:
|
||||
if m.distance < 0.7*n.distance:
|
||||
good.append(m)
|
||||
|
||||
if len(good)>MIN_MATCH_COUNT:
|
||||
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
|
||||
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
|
||||
|
||||
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0)
|
||||
matchesMask = mask.ravel().tolist()
|
||||
|
||||
h,w = img_template.shape
|
||||
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
|
||||
dst = cv.perspectiveTransform(pts,M)
|
||||
|
||||
roi = img[np.int32(dst)[0][0][1]:np.int32(dst)[2][0][1], np.int32(dst)[0][0][0]:np.int32(dst)[2][0][0]]
|
||||
# roi = detect_black(roi)
|
||||
|
||||
# img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA)
|
||||
else:
|
||||
print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
|
||||
|
||||
return roi
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
rospy.init_node("maintain")
|
||||
rospy.loginfo("maintain task start ......")
|
||||
|
||||
rgb_sub = message_filters.Subscriber("/camera/color/image_raw", Image)
|
||||
depth_sub = message_filters.Subscriber("/camera/aligned_depth_to_color/image_raw", Image)
|
||||
|
||||
ts = message_filters.TimeSynchronizer([rgb_sub, depth_sub], 1)
|
||||
ts.registerCallback(callback)
|
||||
|
||||
|
||||
rospy.spin()
|
||||
|
||||
|
||||
# backup
|
||||
def calculate_image_edge_plane_normal(depth_roi):
|
||||
# Get the shape of the depth_roi
|
||||
height, width = depth_roi.shape
|
||||
|
||||
# Get the edges of the ROI
|
||||
left_edge = [(0, y) for y in range(height)]
|
||||
right_edge = [(width-1, y) for y in range(height)]
|
||||
top_edge = [(x, 0) for x in range(width)]
|
||||
bottom_edge = [(x, height-1) for x in range(width)]
|
||||
edges = left_edge + right_edge + top_edge + bottom_edge
|
||||
|
||||
# Create a 2D grid of X and Y coordinates
|
||||
X, Y = np.meshgrid(np.arange(width), np.arange(height))
|
||||
|
||||
# Reshape the X, Y, and depth_roi arrays into one-dimensional arrays
|
||||
X = X.reshape(-1)
|
||||
Y = Y.reshape(-1)
|
||||
Z = depth_roi.reshape(-1)
|
||||
|
||||
# Stack the X, Y, and depth_roi arrays vertically to create a 3D array of points in the form of [X, Y, Z]
|
||||
points = np.vstack([X, Y, Z]).T
|
||||
|
||||
# Compute the mean depth value of the edges
|
||||
edge_depths = []
|
||||
for edge_point in edges:
|
||||
edge_depths.append(depth_roi[edge_point[1], edge_point[0]])
|
||||
mean_depth = np.mean(edge_depths)
|
||||
|
||||
# Create a mask to extract the points on the edges
|
||||
mask = np.zeros_like(depth_roi, dtype=np.uint8)
|
||||
for edge_point in edges:
|
||||
mask[edge_point[1], edge_point[0]] = 1
|
||||
masked_depth_roi = depth_roi * mask
|
||||
|
||||
# Extract the 3D coordinates of the points on the edges
|
||||
edge_points = []
|
||||
for edge_point in edges:
|
||||
edge_points.append([edge_point[0], edge_point[1], masked_depth_roi[edge_point[1], edge_point[0]]])
|
||||
|
||||
# Convert the list of edge points to a numpy array
|
||||
edge_points = np.array(edge_points)
|
||||
|
||||
# Shift the edge points so that the mean depth value is at the origin
|
||||
edge_points = edge_points - np.array([width/2, height/2, mean_depth])
|
||||
|
||||
# Compute the singular value decomposition (SVD) of the edge points
|
||||
U, S, V = np.linalg.svd(edge_points)
|
||||
|
||||
# Extract the normal vector of the plane that best fits the edge points from the right-singular vector corresponding to the smallest singular value
|
||||
normal = V[2]
|
||||
|
||||
return normal
|
||||
@@ -19,7 +19,7 @@ from rostopic import get_topic_type
|
||||
from detection_msgs.msg import BoundingBox, BoundingBoxes
|
||||
|
||||
bridge = CvBridge()
|
||||
annulus_width = 10
|
||||
annulus_width = 20
|
||||
|
||||
# 2d to 3d
|
||||
def computer_2d_3d(x, y, depth_roi, color_intrinsics):
|
||||
@@ -37,7 +37,7 @@ def compute_plane_normal(box, depth, color_intrinsics):
|
||||
# 计算矩形中心点坐标
|
||||
x_center = (box[0] + box[2]) / 2
|
||||
y_center = (box[1] + box[3]) / 2
|
||||
z = depth[int(y_center), int(x_center)]
|
||||
z = depth[int(y_center), int(x_center)] / 1000
|
||||
x = (x_center - cx) * z / fx
|
||||
y = (y_center - cy) * z / fy
|
||||
# 计算四个顶点坐标
|
||||
@@ -50,39 +50,110 @@ def compute_plane_normal(box, depth, color_intrinsics):
|
||||
x4 = (box[0] - cx) * z / fx
|
||||
y4 = (box[3] - cy) * z / fy
|
||||
# 计算矩形边缘向量
|
||||
v1 = np.array([x2 - x1, y2 - y1, depth[int(box[1]), int(box[0])] - z])
|
||||
v2 = np.array([x3 - x2, y3 - y2, depth[int(box[1]), int(box[2])] - z])
|
||||
v3 = np.array([x4 - x3, y4 - y3, depth[int(box[3]), int(box[2])] - z])
|
||||
v4 = np.array([x1 - x4, y1 - y4, depth[int(box[3]), int(box[0])] - z])
|
||||
v1 = np.array([x2 - x1, y2 - y1, depth[int(box[1]), int(box[0])] / 1000 - z])
|
||||
v2 = np.array([x3 - x2, y3 - y2, depth[int(box[1]), int(box[2])] / 1000 - z])
|
||||
v3 = np.array([x4 - x3, y4 - y3, depth[int(box[3]), int(box[2])] / 1000 - z])
|
||||
v4 = np.array([x1 - x4, y1 - y4, depth[int(box[3]), int(box[0])] / 1000 - z])
|
||||
# 计算平面法向量
|
||||
normal = np.cross(v1, v2)
|
||||
normal += np.cross(v2, v3)
|
||||
normal += np.cross(v3, v4)
|
||||
normal += np.cross(v4, v1)
|
||||
normal /= np.linalg.norm(normal)
|
||||
# 将法向量转换为四元数表示
|
||||
theta = math.acos(normal[2])
|
||||
sin_theta_2 = math.sin(theta/2)
|
||||
quaternion = [math.cos(theta/2), sin_theta_2 * normal[0], sin_theta_2 * normal[1], sin_theta_2 * normal[2]]
|
||||
# 计算法向量相对于参考向量的旋转角度和旋转轴
|
||||
ref_vector = np.array([0, 0, 1])
|
||||
normal_vector = normal
|
||||
angle = math.acos(np.dot(ref_vector, normal_vector) / (np.linalg.norm(ref_vector) * np.linalg.norm(normal_vector)))
|
||||
axis = np.cross(ref_vector, normal_vector)
|
||||
axis = axis / np.linalg.norm(axis)
|
||||
|
||||
# 将旋转角度和旋转轴转换为四元数
|
||||
qx, qy, qz, qw = tf.transformations.quaternion_about_axis(angle, axis)
|
||||
quaternion = [qx, qy, qz, qw]
|
||||
return quaternion
|
||||
|
||||
def compute_normal_vector(p1, p2, p3, p4):
|
||||
# Compute two vectors in the plane
|
||||
v1 = np.array(p2) - np.array(p1)
|
||||
v2 = np.array(p3) - np.array(p1)
|
||||
# Compute the cross product of the two vectors to get the normal vector
|
||||
n = np.cross(v1, v2)
|
||||
# Compute the fourth point in the plane
|
||||
p4 = np.array(p4)
|
||||
# Check if the fourth point is on the same side of the plane as the origin
|
||||
if np.dot(n, p4 - np.array(p1)) < 0:
|
||||
n = -n
|
||||
# Normalize the normal vector to obtain a unit vector
|
||||
n = n / np.linalg.norm(n)
|
||||
theta = math.acos(n[2])
|
||||
sin_theta_2 = math.sin(theta/2)
|
||||
quaternion = [math.cos(theta/2), sin_theta_2 * n[0], sin_theta_2 * n[1], sin_theta_2 * n[2]]
|
||||
return quaternion
|
||||
# 计算法向量相对于参考向量的旋转角度和旋转轴
|
||||
ref_vector = np.array([0, 0, 1])
|
||||
normal_vector = normal
|
||||
angle = math.acos(np.dot(ref_vector, normal_vector) / (np.linalg.norm(ref_vector) * np.linalg.norm(normal_vector)))
|
||||
axis = np.cross(ref_vector, normal_vector)
|
||||
axis = axis / np.linalg.norm(axis)
|
||||
|
||||
# 将旋转角度和旋转轴转换为四元数
|
||||
qx, qy, qz, qw = tf.transformations.quaternion_about_axis(angle, axis)
|
||||
quaternion = [qx, qy, qz, qw]
|
||||
return quaternion
|
||||
|
||||
def calculate_image_edge_plane_normal(depth_roi):
|
||||
# Get the shape of the depth_roi
|
||||
height, width = depth_roi.shape
|
||||
|
||||
# Get the edges of the ROI
|
||||
left_edge = [(0, y) for y in range(height)]
|
||||
right_edge = [(width-1, y) for y in range(height)]
|
||||
top_edge = [(x, 0) for x in range(width)]
|
||||
bottom_edge = [(x, height-1) for x in range(width)]
|
||||
edges = left_edge + right_edge + top_edge + bottom_edge
|
||||
|
||||
# Create a 2D grid of X and Y coordinates
|
||||
X, Y = np.meshgrid(np.arange(width), np.arange(height))
|
||||
|
||||
# Reshape the X, Y, and depth_roi arrays into one-dimensional arrays
|
||||
X = X.reshape(-1)
|
||||
Y = Y.reshape(-1)
|
||||
Z = depth_roi.reshape(-1)
|
||||
|
||||
# Stack the X, Y, and depth_roi arrays vertically to create a 3D array of points in the form of [X, Y, Z]
|
||||
points = np.vstack([X, Y, Z]).T
|
||||
|
||||
# Compute the mean depth value of the edges
|
||||
edge_depths = []
|
||||
for edge_point in edges:
|
||||
edge_depths.append(depth_roi[edge_point[1], edge_point[0]])
|
||||
mean_depth = np.mean(edge_depths)
|
||||
|
||||
# Create a mask to extract the points on the edges
|
||||
mask = np.zeros_like(depth_roi, dtype=np.uint8)
|
||||
for edge_point in edges:
|
||||
mask[edge_point[1], edge_point[0]] = 1
|
||||
masked_depth_roi = depth_roi * mask
|
||||
|
||||
# Extract the 3D coordinates of the points on the edges
|
||||
edge_points = []
|
||||
for edge_point in edges:
|
||||
edge_points.append([edge_point[0], edge_point[1], masked_depth_roi[edge_point[1], edge_point[0]]])
|
||||
|
||||
# Convert the list of edge points to a numpy array
|
||||
edge_points = np.array(edge_points)
|
||||
|
||||
# Shift the edge points so that the mean depth value is at the origin
|
||||
edge_points = edge_points - np.array([width/2, height/2, mean_depth])
|
||||
|
||||
# Compute the singular value decomposition (SVD) of the edge points
|
||||
U, S, V = np.linalg.svd(edge_points)
|
||||
|
||||
# Extract the normal vector of the plane that best fits the edge points from the right-singular vector corresponding to the smallest singular value
|
||||
normal = V[2]
|
||||
|
||||
return normal
|
||||
|
||||
# def compute_normal_vector(p1, p2, p3, p4):
|
||||
# # Compute two vectors in the plane
|
||||
# v1 = np.array(p2) - np.array(p1)
|
||||
# v2 = np.array(p3) - np.array(p1)
|
||||
# # Compute the cross product of the two vectors to get the normal vector
|
||||
# n = np.cross(v1, v2)
|
||||
# # Compute the fourth point in the plane
|
||||
# p4 = np.array(p4)
|
||||
# # Check if the fourth point is on the same side of the plane as the origin
|
||||
# if np.dot(n, p4 - np.array(p1)) < 0:
|
||||
# n = -n
|
||||
# # Normalize the normal vector to obtain a unit vector
|
||||
# n = n / np.linalg.norm(n)
|
||||
# theta = math.acos(n[2])
|
||||
# sin_theta_2 = math.sin(theta/2)
|
||||
# quaternion = [math.cos(theta/2), sin_theta_2 * n[0], sin_theta_2 * n[1], sin_theta_2 * n[2]]
|
||||
# return quaternion
|
||||
|
||||
def filter_quaternion(quat, quat_prev, alpha):
|
||||
if quat_prev is None:
|
||||
@@ -114,7 +185,7 @@ def box_callback(box, depth, color_info):
|
||||
x, y, z = computer_2d_3d(screw_x, screw_y, depth_array, color_intrinsics)
|
||||
# rospy.loginfo("screw pose: x: %f, y: %f, z: %f", x, y, z)
|
||||
# calculate normal direction of screw area
|
||||
box = [boundingBox.ymin - annulus_width, boundingBox.xmin - annulus_width, boundingBox.ymax + annulus_width, boundingBox.xmax + annulus_width]
|
||||
box = [boundingBox.xmin - annulus_width, boundingBox.ymin - annulus_width, boundingBox.xmax + annulus_width, boundingBox.ymax + annulus_width]
|
||||
# p1x, p1y, p1z = computer_2d_3d(boundingBox.xmin-annulus_width, boundingBox.ymin-annulus_width, depth_array, color_intrinsics)
|
||||
# p2x, p2y, p2z = computer_2d_3d(boundingBox.xmax+annulus_width, boundingBox.ymin-annulus_width, depth_array, color_intrinsics)
|
||||
# p3x, p3y, p3z = computer_2d_3d(boundingBox.xmax+annulus_width, boundingBox.ymax+annulus_width, depth_array, color_intrinsics)
|
||||
@@ -141,6 +212,7 @@ def box_callback(box, depth, color_info):
|
||||
screw_euler = tf.transformations.euler_from_quaternion(screw_quat)
|
||||
screw_quat_zero_z = tf.transformations.quaternion_from_euler(screw_euler[0], screw_euler[1], 0)
|
||||
|
||||
print(screw_euler)
|
||||
|
||||
# Apply low-pass filter to screw quaternion
|
||||
alpha = 0.4
|
||||
@@ -157,10 +229,10 @@ def box_callback(box, depth, color_info):
|
||||
screw_tf.transform.translation.x = x
|
||||
screw_tf.transform.translation.y = y
|
||||
screw_tf.transform.translation.z = z
|
||||
screw_tf.transform.rotation.x = screw_quat[0]
|
||||
screw_tf.transform.rotation.y = screw_quat[1]
|
||||
screw_tf.transform.rotation.z = screw_quat[2]
|
||||
screw_tf.transform.rotation.w = screw_quat[3]
|
||||
screw_tf.transform.rotation.x = screw_quat_filtered[0]
|
||||
screw_tf.transform.rotation.y = screw_quat_filtered[1]
|
||||
screw_tf.transform.rotation.z = screw_quat_filtered[2]
|
||||
screw_tf.transform.rotation.w = screw_quat_filtered[3]
|
||||
|
||||
tf_broadcaster.sendTransform(screw_tf)
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
<!-- Detection configuration -->
|
||||
<arg name="weights" default="$(find yolov5_ros)/src/yolov5/best.pt"/>
|
||||
<arg name="data" default="$(find yolov5_ros)/src/yolov5/data/mydata.yaml"/>
|
||||
<arg name="confidence_threshold" default="0.75"/>
|
||||
<arg name="confidence_threshold" default="0.70"/>
|
||||
<arg name="iou_threshold" default="0.45"/>
|
||||
<arg name="maximum_detections" default="1000"/>
|
||||
<arg name="device" default="0"/>
|
||||
@@ -23,7 +23,7 @@
|
||||
<arg name="output_topic" default="/yolov5/detections"/>
|
||||
|
||||
<!-- Optional topic (publishing annotated image) -->
|
||||
<arg name="publish_image" default="false"/>
|
||||
<arg name="publish_image" default="true"/>
|
||||
<arg name="output_image_topic" default="/yolov5/image_out"/>
|
||||
|
||||
|
||||
@@ -50,7 +50,8 @@
|
||||
<param name="publish_image" value="$(arg publish_image)"/>
|
||||
<param name="output_image_topic" value="$(arg output_image_topic)"/>
|
||||
</node>
|
||||
<!-- <include file="$(find camera_launch)/launch/d435.launch"/> -->
|
||||
<include file="$(find realsense2_camera)/launch/my_camera.launch" >
|
||||
</include>
|
||||
|
||||
|
||||
</launch>
|
||||
|
||||
Reference in New Issue
Block a user