Files
maintain/src/maintain/scripts/test copy.py
wxchen 7045f42ceb Update attitude calculation method
modified:   src/maintain/scripts/test copy.py
	modified:   src/maintain/scripts/test.py
2023-05-09 16:32:38 +08:00

149 lines
4.8 KiB
Python
Executable File

#! /home/wxchen/.conda/envs/gsmini/bin/python
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
import rospy
from sensor_msgs.msg import Image
import message_filters
from cv_bridge import CvBridge, CvBridgeError
import rospkg
MIN_MATCH_COUNT = 10
pkg_path = rospkg.RosPack().get_path('maintain')
rospy.loginfo(pkg_path)
img_template = cv.imread(pkg_path + '/scripts/tt.png',0)
def callback(rgb, depth):
rospy.loginfo("callback")
bridge = CvBridge()
# rospy.loginfo(rgb.header.stamp)
# rospy.loginfo(depth.header.stamp)
try:
rgb_image = bridge.imgmsg_to_cv2(rgb, 'bgr8')
depth_image = bridge.imgmsg_to_cv2(depth, '16UC1')
img_matcher = matcher(rgb_image)
cv.imshow("img_matcher", img_matcher)
cv.waitKey(1000)
except CvBridgeError as e:
print(e)
def matcher(img):
try:
# Initiate SIFT detector
sift = cv.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img_template,None)
kp2, des2 = sift.detectAndCompute(img,None)
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
# store all the good matches as per Lowe's ratio test.
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w = img_template.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv.perspectiveTransform(pts,M)
roi = img[np.int32(dst)[0][0][1]:np.int32(dst)[2][0][1], np.int32(dst)[0][0][0]:np.int32(dst)[2][0][0]]
# roi = detect_black(roi)
# img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA)
else:
print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
return roi
except Exception as e:
print(e)
if __name__ == "__main__":
rospy.init_node("maintain")
rospy.loginfo("maintain task start ......")
rgb_sub = message_filters.Subscriber("/camera/color/image_raw", Image)
depth_sub = message_filters.Subscriber("/camera/aligned_depth_to_color/image_raw", Image)
ts = message_filters.TimeSynchronizer([rgb_sub, depth_sub], 1)
ts.registerCallback(callback)
rospy.spin()
# backup
def calculate_image_edge_plane_normal(depth_roi):
# Get the shape of the depth_roi
height, width = depth_roi.shape
# Get the edges of the ROI
left_edge = [(0, y) for y in range(height)]
right_edge = [(width-1, y) for y in range(height)]
top_edge = [(x, 0) for x in range(width)]
bottom_edge = [(x, height-1) for x in range(width)]
edges = left_edge + right_edge + top_edge + bottom_edge
# Create a 2D grid of X and Y coordinates
X, Y = np.meshgrid(np.arange(width), np.arange(height))
# Reshape the X, Y, and depth_roi arrays into one-dimensional arrays
X = X.reshape(-1)
Y = Y.reshape(-1)
Z = depth_roi.reshape(-1)
# Stack the X, Y, and depth_roi arrays vertically to create a 3D array of points in the form of [X, Y, Z]
points = np.vstack([X, Y, Z]).T
# Compute the mean depth value of the edges
edge_depths = []
for edge_point in edges:
edge_depths.append(depth_roi[edge_point[1], edge_point[0]])
mean_depth = np.mean(edge_depths)
# Create a mask to extract the points on the edges
mask = np.zeros_like(depth_roi, dtype=np.uint8)
for edge_point in edges:
mask[edge_point[1], edge_point[0]] = 1
masked_depth_roi = depth_roi * mask
# Extract the 3D coordinates of the points on the edges
edge_points = []
for edge_point in edges:
edge_points.append([edge_point[0], edge_point[1], masked_depth_roi[edge_point[1], edge_point[0]]])
# Convert the list of edge points to a numpy array
edge_points = np.array(edge_points)
# Shift the edge points so that the mean depth value is at the origin
edge_points = edge_points - np.array([width/2, height/2, mean_depth])
# Compute the singular value decomposition (SVD) of the edge points
U, S, V = np.linalg.svd(edge_points)
# Extract the normal vector of the plane that best fits the edge points from the right-singular vector corresponding to the smallest singular value
normal = V[2]
return normal