This commit is contained in:
Chenwenxuan
2024-03-06 14:54:30 +08:00
commit edac2715f0
1525 changed files with 809982 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
*.user

Binary file not shown.

BIN
Image/2.jpg Normal file

Binary file not shown.

BIN
Image/3.jpg Normal file

Binary file not shown.

BIN
Image/WI.jpg Normal file

Binary file not shown.

BIN
Image/WIF.jpg Normal file

Binary file not shown.

BIN
Image/logo.png Normal file

Binary file not shown.

1071
MVS/Includes/CameraParams.h Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,107 @@
#ifndef _MV_ERROR_DEFINE_H_
#define _MV_ERROR_DEFINE_H_
#include "MvISPErrorDefine.h"
/********************************************************************/
/// \~chinese
/// \name 正确码定义
/// @{
/// \~english
/// \name Definition of correct code
/// @{
#define MV_OK 0x00000000 ///< \~chinese 成功,无错误 \~english Successed, no error
/// @}
/********************************************************************/
/// \~chinese
/// \name 通用错误码定义:范围0x80000000-0x800000FF
/// @{
/// \~english
/// \name Definition of General error code
/// @{
#define MV_E_HANDLE 0x80000000 ///< \~chinese 错误或无效的句柄 \~english Error or invalid handle
#define MV_E_SUPPORT 0x80000001 ///< \~chinese 不支持的功能 \~english Not supported function
#define MV_E_BUFOVER 0x80000002 ///< \~chinese 缓存已满 \~english Buffer overflow
#define MV_E_CALLORDER 0x80000003 ///< \~chinese 函数调用顺序错误 \~english Function calling order error
#define MV_E_PARAMETER 0x80000004 ///< \~chinese 错误的参数 \~english Incorrect parameter
#define MV_E_RESOURCE 0x80000006 ///< \~chinese 资源申请失败 \~english Applying resource failed
#define MV_E_NODATA 0x80000007 ///< \~chinese 无数据 \~english No data
#define MV_E_PRECONDITION 0x80000008 ///< \~chinese 前置条件有误,或运行环境已发生变化 \~english Precondition error, or running environment changed
#define MV_E_VERSION 0x80000009 ///< \~chinese 版本不匹配 \~english Version mismatches
#define MV_E_NOENOUGH_BUF 0x8000000A ///< \~chinese 传入的内存空间不足 \~english Insufficient memory
#define MV_E_ABNORMAL_IMAGE 0x8000000B ///< \~chinese 异常图像,可能是丢包导致图像不完整 \~english Abnormal image, maybe incomplete image because of lost packet
#define MV_E_LOAD_LIBRARY 0x8000000C ///< \~chinese 动态导入DLL失败 \~english Load library failed
#define MV_E_NOOUTBUF 0x8000000D ///< \~chinese 没有可输出的缓存 \~english No Avaliable Buffer
#define MV_E_ENCRYPT 0x8000000E ///< \~chinese 加密错误 \~english Encryption error
#define MV_E_UNKNOW 0x800000FF ///< \~chinese 未知的错误 \~english Unknown error
/// @}
/********************************************************************/
/// \~chinese
/// \name GenICam系列错误:范围0x80000100-0x800001FF
/// @{
/// \~english
/// \name GenICam Series Error Codes: Range from 0x80000100 to 0x800001FF
/// @{
#define MV_E_GC_GENERIC 0x80000100 ///< \~chinese 通用错误 \~english General error
#define MV_E_GC_ARGUMENT 0x80000101 ///< \~chinese 参数非法 \~english Illegal parameters
#define MV_E_GC_RANGE 0x80000102 ///< \~chinese 值超出范围 \~english The value is out of range
#define MV_E_GC_PROPERTY 0x80000103 ///< \~chinese 属性 \~english Property
#define MV_E_GC_RUNTIME 0x80000104 ///< \~chinese 运行环境有问题 \~english Running environment error
#define MV_E_GC_LOGICAL 0x80000105 ///< \~chinese 逻辑错误 \~english Logical error
#define MV_E_GC_ACCESS 0x80000106 ///< \~chinese 节点访问条件有误 \~english Node accessing condition error
#define MV_E_GC_TIMEOUT 0x80000107 ///< \~chinese 超时 \~english Timeout
#define MV_E_GC_DYNAMICCAST 0x80000108 ///< \~chinese 转换异常 \~english Transformation exception
#define MV_E_GC_UNKNOW 0x800001FF ///< \~chinese GenICam未知错误 \~english GenICam unknown error
/// @}
/********************************************************************/
/// \~chinese
/// \name GigE_STATUS对应的错误码:范围0x80000200-0x800002FF
/// @{
/// \~english
/// \name GigE_STATUS Error Codes: Range from 0x80000200 to 0x800002FF
/// @{
#define MV_E_NOT_IMPLEMENTED 0x80000200 ///< \~chinese 命令不被设备支持 \~english The command is not supported by device
#define MV_E_INVALID_ADDRESS 0x80000201 ///< \~chinese 访问的目标地址不存在 \~english The target address being accessed does not exist
#define MV_E_WRITE_PROTECT 0x80000202 ///< \~chinese 目标地址不可写 \~english The target address is not writable
#define MV_E_ACCESS_DENIED 0x80000203 ///< \~chinese 设备无访问权限 \~english No permission
#define MV_E_BUSY 0x80000204 ///< \~chinese 设备忙,或网络断开 \~english Device is busy, or network disconnected
#define MV_E_PACKET 0x80000205 ///< \~chinese 网络包数据错误 \~english Network data packet error
#define MV_E_NETER 0x80000206 ///< \~chinese 网络相关错误 \~english Network error
#define MV_E_IP_CONFLICT 0x80000221 ///< \~chinese 设备IP冲突 \~english Device IP conflict
/// @}
/********************************************************************/
/// \~chinese
/// \name USB_STATUS对应的错误码:范围0x80000300-0x800003FF
/// @{
/// \~english
/// \name USB_STATUS Error Codes: Range from 0x80000300 to 0x800003FF
/// @{
#define MV_E_USB_READ 0x80000300 ///< \~chinese 读usb出错 \~english Reading USB error
#define MV_E_USB_WRITE 0x80000301 ///< \~chinese 写usb出错 \~english Writing USB error
#define MV_E_USB_DEVICE 0x80000302 ///< \~chinese 设备异常 \~english Device exception
#define MV_E_USB_GENICAM 0x80000303 ///< \~chinese GenICam相关错误 \~english GenICam error
#define MV_E_USB_BANDWIDTH 0x80000304 ///< \~chinese 带宽不足 \~english Insufficient bandwidth
#define MV_E_USB_DRIVER 0x80000305 ///< \~chinese 驱动不匹配或者未装驱动 \~english Driver mismatch or unmounted drive
#define MV_E_USB_UNKNOW 0x800003FF ///< \~chinese USB未知的错误 \~english USB unknown error
/// @}
/********************************************************************/
/// \~chinese
/// \name 升级时对应的错误码:范围0x80000400-0x800004FF
/// @{
/// \~english
/// \name Upgrade Error Codes: Range from 0x80000400 to 0x800004FF
/// @{
#define MV_E_UPG_FILE_MISMATCH 0x80000400 ///< \~chinese 升级固件不匹配 \~english Firmware mismatches
#define MV_E_UPG_LANGUSGE_MISMATCH 0x80000401 ///< \~chinese 升级固件语言不匹配 \~english Firmware language mismatches
#define MV_E_UPG_CONFLICT 0x80000402 ///< \~chinese 升级冲突(设备已经在升级了再次请求升级即返回此错误) \~english Upgrading conflicted (repeated upgrading requests during device upgrade)
#define MV_E_UPG_INNER_ERR 0x80000403 ///< \~chinese 升级时设备内部出现错误 \~english Camera internal error during upgrade
#define MV_E_UPG_UNKNOW 0x800004FF ///< \~chinese 升级时未知错误 \~english Unknown error during upgrade
/// @}
#endif //_MV_ERROR_DEFINE_H_

View File

@@ -0,0 +1,93 @@
#ifndef _MV_ISP_ERROR_DEFINE_H_
#define _MV_ISP_ERROR_DEFINE_H_
/************************************************************************
* 来自ISP算法库的错误码
************************************************************************/
// 通用类型
#define MV_ALG_OK 0x00000000 //处理正确
#define MV_ALG_ERR 0x10000000 //不确定类型错误
// 能力检查
#define MV_ALG_E_ABILITY_ARG 0x10000001 //能力集中存在无效参数
// 内存检查
#define MV_ALG_E_MEM_NULL 0x10000002 //内存地址为空
#define MV_ALG_E_MEM_ALIGN 0x10000003 //内存对齐不满足要求
#define MV_ALG_E_MEM_LACK 0x10000004 //内存空间大小不够
#define MV_ALG_E_MEM_SIZE_ALIGN 0x10000005 //内存空间大小不满足对齐要求
#define MV_ALG_E_MEM_ADDR_ALIGN 0x10000006 //内存地址不满足对齐要求
// 图像检查
#define MV_ALG_E_IMG_FORMAT 0x10000007 //图像格式不正确或者不支持
#define MV_ALG_E_IMG_SIZE 0x10000008 //图像宽高不正确或者超出范围
#define MV_ALG_E_IMG_STEP 0x10000009 //图像宽高与step参数不匹配
#define MV_ALG_E_IMG_DATA_NULL 0x1000000A //图像数据存储地址为空
// 输入输出参数检查
#define MV_ALG_E_CFG_TYPE 0x1000000B //设置或者获取参数类型不正确
#define MV_ALG_E_CFG_SIZE 0x1000000C //设置或者获取参数的输入、输出结构体大小不正确
#define MV_ALG_E_PRC_TYPE 0x1000000D //处理类型不正确
#define MV_ALG_E_PRC_SIZE 0x1000000E //处理时输入、输出参数大小不正确
#define MV_ALG_E_FUNC_TYPE 0x1000000F //子处理类型不正确
#define MV_ALG_E_FUNC_SIZE 0x10000010 //子处理时输入、输出参数大小不正确
// 运行参数检查
#define MV_ALG_E_PARAM_INDEX 0x10000011 //index参数不正确
#define MV_ALG_E_PARAM_VALUE 0x10000012 //value参数不正确或者超出范围
#define MV_ALG_E_PARAM_NUM 0x10000013 //param_num参数不正确
// 接口调用检查
#define MV_ALG_E_NULL_PTR 0x10000014 //函数参数指针为空
#define MV_ALG_E_OVER_MAX_MEM 0x10000015 //超过限定的最大内存
#define MV_ALG_E_CALL_BACK 0x10000016 //回调函数出错
// 算法库加密相关检查
#define MV_ALG_E_ENCRYPT 0x10000017 //加密错误
#define MV_ALG_E_EXPIRE 0x10000018 //算法库使用期限错误
// 内部模块返回的基本错误类型
#define MV_ALG_E_BAD_ARG 0x10000019 //参数范围不正确
#define MV_ALG_E_DATA_SIZE 0x1000001A //数据大小不正确
#define MV_ALG_E_STEP 0x1000001B //数据step不正确
// cpu指令集支持错误码
#define MV_ALG_E_CPUID 0x1000001C //cpu不支持优化代码中的指令集
#define MV_ALG_WARNING 0x1000001D //警告
#define MV_ALG_E_TIME_OUT 0x1000001E //算法库超时
#define MV_ALG_E_LIB_VERSION 0x1000001F //算法版本号出错
#define MV_ALG_E_MODEL_VERSION 0x10000020 //模型版本号出错
#define MV_ALG_E_GPU_MEM_ALLOC 0x10000021 //GPU内存分配错误
#define MV_ALG_E_FILE_NON_EXIST 0x10000022 //文件不存在
#define MV_ALG_E_NONE_STRING 0x10000023 //字符串为空
#define MV_ALG_E_IMAGE_CODEC 0x10000024 //图像解码器错误
#define MV_ALG_E_FILE_OPEN 0x10000025 //打开文件错误
#define MV_ALG_E_FILE_READ 0x10000026 //文件读取错误
#define MV_ALG_E_FILE_WRITE 0x10000027 //文件写错误
#define MV_ALG_E_FILE_READ_SIZE 0x10000028 //文件读取大小错误
#define MV_ALG_E_FILE_TYPE 0x10000029 //文件类型错误
#define MV_ALG_E_MODEL_TYPE 0x1000002A //模型类型错误
#define MV_ALG_E_MALLOC_MEM 0x1000002B //分配内存错误
#define MV_ALG_E_BIND_CORE_FAILED 0x1000002C //线程绑核失败
// 降噪特有错误码
#define MV_ALG_E_DENOISE_NE_IMG_FORMAT 0x10402001 //噪声特性图像格式错误
#define MV_ALG_E_DENOISE_NE_FEATURE_TYPE 0x10402002 //噪声特性类型错误
#define MV_ALG_E_DENOISE_NE_PROFILE_NUM 0x10402003 //噪声特性个数错误
#define MV_ALG_E_DENOISE_NE_GAIN_NUM 0x10402004 //噪声特性增益个数错误
#define MV_ALG_E_DENOISE_NE_GAIN_VAL 0x10402005 //噪声曲线增益值输入错误
#define MV_ALG_E_DENOISE_NE_BIN_NUM 0x10402006 //噪声曲线柱数错误
#define MV_ALG_E_DENOISE_NE_INIT_GAIN 0x10402007 //噪声估计初始化增益设置错误
#define MV_ALG_E_DENOISE_NE_NOT_INIT 0x10402008 //噪声估计未初始化
#define MV_ALG_E_DENOISE_COLOR_MODE 0x10402009 //颜色空间模式错误
#define MV_ALG_E_DENOISE_ROI_NUM 0x1040200a //图像ROI个数错误
#define MV_ALG_E_DENOISE_ROI_ORI_PT 0x1040200b //图像ROI原点错误
#define MV_ALG_E_DENOISE_ROI_SIZE 0x1040200c //图像ROI大小错误
#define MV_ALG_E_DENOISE_GAIN_NOT_EXIST 0x1040200d //输入的相机增益不存在(增益个数已达上限)
#define MV_ALG_E_DENOISE_GAIN_BEYOND_RANGE 0x1040200e //输入的相机增益不在范围内
#define MV_ALG_E_DENOISE_NP_BUF_SIZE 0x1040200f //输入的噪声特性内存大小错误
#endif //_MV_ISP_ERROR_DEFINE_H_

File diff suppressed because it is too large Load Diff

3790
MVS/Includes/MvSdkExport.h Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,541 @@
#ifndef _MV_OBSOLETE_CAM_PARAMS_H_
#define _MV_OBSOLETE_CAM_PARAMS_H_
#include "PixelType.h"
/// \~chinese 输出帧的信息 \~english Output Frame Information
typedef struct _MV_FRAME_OUT_INFO_
{
unsigned short nWidth; ///< [OUT] \~chinese 图像宽 \~english Image Width
unsigned short nHeight; ///< [OUT] \~chinese 图像高 \~english Image Height
enum MvGvspPixelType enPixelType; ///< [OUT] \~chinese 像素格式 \~english Pixel Type
unsigned int nFrameNum; ///< [OUT] \~chinese 帧号 \~english Frame Number
unsigned int nDevTimeStampHigh; ///< [OUT] \~chinese 时间戳高32位 \~english Timestamp high 32 bits
unsigned int nDevTimeStampLow; ///< [OUT] \~chinese 时间戳低32位 \~english Timestamp low 32 bits
unsigned int nReserved0; ///< [OUT] \~chinese 保留8字节对齐 \~english Reserved, 8-byte aligned
int64_t nHostTimeStamp; ///< [OUT] \~chinese 主机生成的时间戳 \~english Host-generated timestamp
unsigned int nFrameLen;
unsigned int nLostPacket; // 本帧丢包数
unsigned int nReserved[2];
}MV_FRAME_OUT_INFO;
/// \~chinese 保存图片参数 \~english Save image type
typedef struct _MV_SAVE_IMAGE_PARAM_T_
{
unsigned char* pData; ///< [IN] \~chinese 输入数据缓存 \~english Input Data Buffer
unsigned int nDataLen; ///< [IN] \~chinese 输入数据大小 \~english Input Data Size
enum MvGvspPixelType enPixelType; ///< [IN] \~chinese 输入像素格式 \~english Input Data Pixel Format
unsigned short nWidth; ///< [IN] \~chinese 图像宽 \~english Image Width
unsigned short nHeight; ///< [IN] \~chinese 图像高 \~english Image Height
unsigned char* pImageBuffer; ///< [OUT] \~chinese 输出图片缓存 \~english Output Image Buffer
unsigned int nImageLen; ///< [OUT] \~chinese 输出图片大小 \~english Output Image Size
unsigned int nBufferSize; ///< [IN] \~chinese 提供的输出缓冲区大小 \~english Output buffer size provided
enum MV_SAVE_IAMGE_TYPE enImageType; ///< [IN] \~chinese 输出图片格式 \~english Output Image Format
}MV_SAVE_IMAGE_PARAM;
typedef struct _MV_IMAGE_BASIC_INFO_
{
unsigned short nWidthValue;
unsigned short nWidthMin;
unsigned int nWidthMax;
unsigned int nWidthInc;
unsigned int nHeightValue;
unsigned int nHeightMin;
unsigned int nHeightMax;
unsigned int nHeightInc;
float fFrameRateValue;
float fFrameRateMin;
float fFrameRateMax;
unsigned int enPixelType; ///< [OUT] \~chinese 当前的像素格式 \~english Current pixel format
unsigned int nSupportedPixelFmtNum; ///< [OUT] \~chinese 支持的像素格式种类 \~english Support pixel format
unsigned int enPixelList[MV_MAX_XML_SYMBOLIC_NUM];
unsigned int nReserved[8];
}MV_IMAGE_BASIC_INFO;
/// \~chinese 噪声特性类型 \~english Noise feature type
typedef enum _MV_CC_BAYER_NOISE_FEATURE_TYPE
{
MV_CC_BAYER_NOISE_FEATURE_TYPE_INVALID = 0, ///< \~chinese 无效值 \~english Invalid
MV_CC_BAYER_NOISE_FEATURE_TYPE_PROFILE = 1, ///< \~chinese 噪声曲线 \~english Noise curve
MV_CC_BAYER_NOISE_FEATURE_TYPE_LEVEL = 2, ///< \~chinese 噪声水平 \~english Noise level
MV_CC_BAYER_NOISE_FEATURE_TYPE_DEFAULT = 1, ///< \~chinese 默认值 \~english Default
}MV_CC_BAYER_NOISE_FEATURE_TYPE;
/// \~chinese Bayer格式降噪特性信息 \~english Denoise profile info
typedef struct _MV_CC_BAYER_NOISE_PROFILE_INFO_T_
{
unsigned int nVersion; ///< \~chinese 版本 \~english version
MV_CC_BAYER_NOISE_FEATURE_TYPE enNoiseFeatureType; ///< \~chinese 噪声特性类型 \~english noise feature type
enum MvGvspPixelType enPixelType; ///< \~chinese 图像格式 \~english image format
int nNoiseLevel; ///< \~chinese 平均噪声水平 \~english noise level
unsigned int nCurvePointNum; ///< \~chinese 曲线点数 \~english curve point number
int* nNoiseCurve; ///< \~chinese 噪声曲线 \~english noise curve
int* nLumCurve; ///< \~chinese 亮度曲线 \~english luminance curve
unsigned int nRes[8]; ///< \~chinese 预留 \~english Reserved
}MV_CC_BAYER_NOISE_PROFILE_INFO;
/// \~chinese Bayer格式噪声估计参数 \~english Bayer noise estimate param
typedef struct _MV_CC_BAYER_NOISE_ESTIMATE_PARAM_T_
{
unsigned int nWidth; ///< [IN] \~chinese 图像宽(大于等于8) \~english Width
unsigned int nHeight; ///< [IN] \~chinese 图像高(大于等于8) \~english Height
enum MvGvspPixelType enPixelType; ///< [IN] \~chinese 像素格式 \~english Pixel format
unsigned char* pSrcData; ///< [IN] \~chinese 输入数据缓存 \~english Input data buffer
unsigned int nSrcDataLen; ///< [IN] \~chinese 输入数据大小 \~english Input data size
unsigned int nNoiseThreshold; ///< [IN] \~chinese 噪声阈值(0-4095) \~english Noise Threshold
unsigned char* pCurveBuf; ///< [IN] \~chinese 用于存储噪声曲线和亮度曲线需要外部分配缓存大小4096 * sizeof(int) * 2 \~english Buffer used to store noise and brightness curves, size:4096 * sizeof(int) * 2)
MV_CC_BAYER_NOISE_PROFILE_INFO stNoiseProfile; ///< [OUT] \~chinese 降噪特性信息 \~english Denoise profile
unsigned int nThreadNum; ///< [IN] \~chinese 线程数量0表示算法库根据硬件自适应1表示单线程默认大于1表示线程数目 \~english Thread number, 0 means that the library is adaptive to the hardware, 1 means single thread(Default value), Greater than 1 indicates the number of threads
unsigned int nRes[8]; ///< \~chinese 预留 \~english Reserved
}MV_CC_BAYER_NOISE_ESTIMATE_PARAM;
/// \~chinese Bayer格式空域降噪参数 \~english Bayer spatial Denoise param
typedef struct _MV_CC_BAYER_SPATIAL_DENOISE_PARAM_T_
{
unsigned int nWidth; ///< [IN] \~chinese 图像宽(大于等于8) \~english Width
unsigned int nHeight; ///< [IN] \~chinese 图像高(大于等于8) \~english Height
enum MvGvspPixelType enPixelType; ///< [IN] \~chinese 像素格式 \~english Pixel format
unsigned char* pSrcData; ///< [IN] \~chinese 输入数据缓存 \~english Input data buffer
unsigned int nSrcDataLen; ///< [IN] \~chinese 输入数据大小 \~english Input data size
unsigned char* pDstBuf; ///< [OUT] \~chinese 输出降噪后的数据 \~english Output data buffer
unsigned int nDstBufSize; ///< [IN] \~chinese 提供的输出缓冲区大小 \~english Provided output buffer size
unsigned int nDstBufLen; ///< [OUT] \~chinese 输出降噪后的数据长度 \~english Output data length
MV_CC_BAYER_NOISE_PROFILE_INFO stNoiseProfile; ///< [IN] \~chinese 降噪特性信息(来源于噪声估计) \~english Denoise profile
unsigned int nDenoiseStrength; ///< [IN] \~chinese 降噪强度(0-100) \~english nDenoise Strength
unsigned int nSharpenStrength; ///< [IN] \~chinese 锐化强度(0-32) \~english Sharpen Strength
unsigned int nNoiseCorrect; ///< [IN] \~chinese 噪声校正系数(0-1280) \~english Noise Correct
unsigned int nThreadNum; ///< [IN] \~chinese 线程数量0表示算法库根据硬件自适应1表示单线程默认大于1表示线程数目 \~english Thread number, 0 means that the library is adaptive to the hardware, 1 means single thread(Default value), Greater than 1 indicates the number of threads
unsigned int nRes[8]; ///< \~chinese 预留 \~english Reserved
}MV_CC_BAYER_SPATIAL_DENOISE_PARAM;
/// \~chinese CLUT参数 \~english CLUT param
typedef struct _MV_CC_CLUT_PARAM_T_
{
bool bCLUTEnable; ///< [IN] \~chinese 是否启用CLUT \~english CLUT enable
unsigned int nCLUTScale; ///< [IN] \~chinese 量化系数(2的整数幂,最大65536) \~english Quantitative scale(Integer power of 2, <= 65536)
unsigned int nCLUTSize; ///< [IN] \~chinese CLUT大小,[17,33]建议值17 \~english CLUT size[17,33](Recommended values of 17)
unsigned char* pCLUTBuf; ///< [IN] \~chinese 量化CLUT表 \~english CLUT buffer
unsigned int nCLUTBufLen; ///< [IN] \~chinese 量化CLUT缓存大小(nCLUTSize*nCLUTSize*nCLUTSize*sizeof(int)*3) \~english CLUT buffer length(nCLUTSize*nCLUTSize*nCLUTSize*sizeof(int)*3)
unsigned int nRes[8]; ///< \~chinese 预留 \~english Reserved
}MV_CC_CLUT_PARAM;
/// \~chinese 锐化结构体 \~english Sharpen structure
typedef struct _MV_CC_SHARPEN_PARAM_T_
{
unsigned int nWidth; ///< [IN] \~chinese 图像宽度(最小8) \~english Image Width
unsigned int nHeight; ///< [IN] \~chinese 图像高度(最小8) \~english Image Height
unsigned char* pSrcBuf; ///< [IN] \~chinese 输入数据缓存 \~english Input data buffer
unsigned int nSrcBufLen; ///< [IN] \~chinese 输入数据大小 \~english Input data length
enum MvGvspPixelType enPixelType; ///< [IN] \~chinese 像素格式 \~english Pixel format
unsigned char* pDstBuf; ///< [OUT] \~chinese 输出数据缓存 \~english Output data buffer
unsigned int nDstBufSize; ///< [IN] \~chinese 提供的输出缓冲区大小 \~english Provided output buffer size
unsigned int nDstBufLen; ///< [OUT] \~chinese 输出数据长度 \~english Output data length
unsigned int nSharpenAmount; ///< [IN] \~chinese 锐度调节强度,[0,500] \~english Sharpen amount,[0,500]
unsigned int nSharpenRadius; ///< [IN] \~chinese 锐度调节半径(半径越大,耗时越长)[1,21] \~english Sharpen radius(The larger the radius, the longer it takes),[1,21]
unsigned int nSharpenThreshold; ///< [IN] \~chinese 锐度调节阈值,[0,255] \~english Sharpen threshold,[0,255]
unsigned int nRes[8]; ///< \~chinese 预留 \~english Reserved
}MV_CC_SHARPEN_PARAM;
/// \~chinese 色彩校正结构体 \~english Color correct structure
typedef struct _MV_CC_COLOR_CORRECT_PARAM_T_
{
unsigned int nWidth; ///< [IN] \~chinese 图像宽度 \~english Image Width
unsigned int nHeight; ///< [IN] \~chinese 图像高度 \~english Image Height
unsigned char* pSrcBuf; ///< [IN] \~chinese 输入数据缓存 \~english Input data buffer
unsigned int nSrcBufLen; ///< [IN] \~chinese 输入数据大小 \~english Input data length
enum MvGvspPixelType enPixelType; ///< [IN] \~chinese 像素格式 \~english Pixel format
unsigned char* pDstBuf; ///< [OUT] \~chinese 输出数据缓存 \~english Output data buffer
unsigned int nDstBufSize; ///< [IN] \~chinese 提供的输出缓冲区大小 \~english Provided output buffer size
unsigned int nDstBufLen; ///< [OUT] \~chinese 输出数据长度 \~english Output data length
unsigned int nImageBit; ///< [IN] \~chinese 有效图像位数(8,10,12,16) \~english Image bit(8 or 10 or 12 or 16)
MV_CC_GAMMA_PARAM stGammaParam; ///< [IN] \~chinese Gamma信息 \~english Gamma info
MV_CC_CCM_PARAM_EX stCCMParam; ///< [IN] \~chinese CCM信息 \~english CCM info
MV_CC_CLUT_PARAM stCLUTParam; ///< [IN] \~chinese CLUT信息 \~english CLUT info
unsigned int nRes[8]; ///< \~chinese 预留 \~english Reserved
}MV_CC_COLOR_CORRECT_PARAM;
/// \~chinese 矩形ROI结构体 \~english Rect ROI structure
typedef struct _MV_CC_RECT_I_
{
unsigned int nX; ///< \~chinese 矩形左上角X轴坐标 \~english X Position
unsigned int nY; ///< \~chinese 矩形左上角Y轴坐标 \~english Y Position
unsigned int nWidth; ///< \~chinese 矩形宽度 \~english Rect Width
unsigned int nHeight; ///< \~chinese 矩形高度 \~english Rect Height
}MV_CC_RECT_I;
/// \~chinese 噪声估计结构体 \~english Noise estimate structure
typedef struct _MV_CC_NOISE_ESTIMATE_PARAM_T_
{
unsigned int nWidth; ///< [IN] \~chinese 图像宽度(最小8) \~english Image Width
unsigned int nHeight; ///< [IN] \~chinese 图像高度(最小8) \~english Image Height
enum MvGvspPixelType enPixelType; ///< [IN] \~chinese 像素格式 \~english Pixel format
unsigned char* pSrcBuf; ///< [IN] \~chinese 输入数据缓存 \~english Input data buffer
unsigned int nSrcBufLen; ///< [IN] \~chinese 输入数据大小 \~english Input data length
MV_CC_RECT_I* pstROIRect; ///< [IN] \~chinese 图像ROI \~english Image ROI
unsigned int nROINum; ///< [IN] \~chinese ROI个数 \~english ROI number
///< \~chinese Bayer域噪声估计参数Mono8/RGB域无效 \~english Bayer Noise estimate param,Mono8/RGB formats are invalid
unsigned int nNoiseThreshold; ///< [IN] \~chinese 噪声阈值[0,4095] \~english Noise threshold[0,4095]
///< \~chinese 建议值:8bit,0xE0;10bit,0x380;12bit,0xE00 \~english Suggestive value:8bit,0xE0;10bit,0x380;12bit,0xE00
unsigned char* pNoiseProfile; ///< [OUT] \~chinese 输出噪声特性 \~english Output Noise Profile
unsigned int nNoiseProfileSize; ///< [IN] \~chinese 提供的输出缓冲区大小 \~english Provided output buffer size
unsigned int nNoiseProfileLen; ///< [OUT] \~chinese 输出噪声特性长度 \~english Output Noise Profile length
unsigned int nRes[8]; ///< \~chinese 预留 \~english Reserved
}MV_CC_NOISE_ESTIMATE_PARAM;
/// \~chinese 空域降噪结构体 \~english Spatial denoise structure
typedef struct _MV_CC_SPATIAL_DENOISE_PARAM_T_
{
unsigned int nWidth; ///< [IN] \~chinese 图像宽度(最小8) \~english Image Width
unsigned int nHeight; ///< [IN] \~chinese 图像高度(最小8) \~english Image Height
enum MvGvspPixelType enPixelType; ///< [IN] \~chinese 像素格式 \~english Pixel format
unsigned char* pSrcBuf; ///< [IN] \~chinese 输入数据缓存 \~english Input data buffer
unsigned int nSrcBufLen; ///< [IN] \~chinese 输入数据大小 \~english Input data length
unsigned char* pDstBuf; ///< [OUT] \~chinese 输出降噪后的数据 \~english Output data buffer
unsigned int nDstBufSize; ///< [IN] \~chinese 提供的输出缓冲区大小 \~english Provided output buffer size
unsigned int nDstBufLen; ///< [OUT] \~chinese 输出降噪后的数据长度 \~english Output data length
unsigned char* pNoiseProfile; ///< [IN] \~chinese 输入噪声特性 \~english Input Noise Profile
unsigned int nNoiseProfileLen; ///< [IN] \~chinese 输入噪声特性长度 \~english Input Noise Profile length
///< \~chinese Bayer域空域降噪参数Mono8/RGB域无效 \~english Bayer Spatial denoise param,Mono8/RGB formats are invalid
unsigned int nBayerDenoiseStrength; ///< [IN] \~chinese 降噪强度[0,100] \~english Denoise Strength[0,100]
unsigned int nBayerSharpenStrength; ///< [IN] \~chinese 锐化强度[0,32] \~english Sharpen Strength[0,32]
unsigned int nBayerNoiseCorrect; ///< [IN] \~chinese 噪声校正系数[0,1280] \~english Noise Correct[0,1280]
///< \~chinese Mono8/RGB域空域降噪参数Bayer域无效 \~english Mono8/RGB Spatial denoise param,Bayer formats are invalid
unsigned int nNoiseCorrectLum; ///< [IN] \~chinese 亮度校正系数[1,2000] \~english Noise Correct Lum[1,2000]
unsigned int nNoiseCorrectChrom; ///< [IN] \~chinese 色调校正系数[1,2000] \~english Noise Correct Chrom[1,2000]
unsigned int nStrengthLum; ///< [IN] \~chinese 亮度降噪强度[0,100] \~english Strength Lum[0,100]
unsigned int nStrengthChrom; ///< [IN] \~chinese 色调降噪强度[0,100] \~english Strength Chrom[0,100]
unsigned int nStrengthSharpen; ///< [IN] \~chinese 锐化强度[1,1000] \~english Strength Sharpen[1,1000]
unsigned int nRes[8]; ///< \~chinese 预留 \~english Reserved
}MV_CC_SPATIAL_DENOISE_PARAM;
/// \~chinese LSC标定结构体 \~english LSC calib structure
typedef struct _MV_CC_LSC_CALIB_PARAM_T_
{
unsigned int nWidth; ///< [IN] \~chinese 图像宽度[16,65535] \~english Image Width
unsigned int nHeight; ///< [IN] \~chinese 图像高度[16-65535] \~english Image Height
enum MvGvspPixelType enPixelType; ///< [IN] \~chinese 像素格式 \~english Pixel format
unsigned char* pSrcBuf; ///< [IN] \~chinese 输入数据缓存 \~english Input data buffer
unsigned int nSrcBufLen; ///< [IN] \~chinese 输入数据长度 \~english Input data length
unsigned char* pCalibBuf; ///< [OUT] \~chinese 输出标定表缓存 \~english Output calib buffer
unsigned int nCalibBufSize; ///< [IN] \~chinese 提供的标定表缓冲大小(nWidth*nHeight*sizeof(unsigned short)) \~english Provided output buffer size
unsigned int nCalibBufLen; ///< [OUT] \~chinese 输出标定表缓存长度 \~english Output calib buffer length
unsigned int nSecNumW; ///< [IN] \~chinese 宽度分块数 \~english Width Sec num
unsigned int nSecNumH; ///< [IN] \~chinese 高度分块数 \~english Height Sec num
unsigned int nPadCoef; ///< [IN] \~chinese 边缘填充系数[1,5] \~english Pad Coef[1,5]
unsigned int nCalibMethod; ///< [IN] \~chinese 标定方式(0-中心为基准;1-最亮区域为基准;2-目标亮度为基准) \~english Calib method
unsigned int nTargetGray; ///< [IN] \~chinese 目标亮度(标定方式为2时有效) \~english Target Gray
///< \~chinese 8位,范围:[0,255] \~english 8bit,range:[0,255]
///< \~chinese 10位,范围:[0,1023] \~english 10bit,range:[0,1023]
///< \~chinese 12位,范围:[0,4095] \~english 12bit,range:[0,4095]
unsigned int nRes[8]; ///< \~chinese 预留 \~english Reserved
}MV_CC_LSC_CALIB_PARAM;
/// \~chinese LSC校正结构体 \~english LSC correct structure
typedef struct _MV_CC_LSC_CORRECT_PARAM_T_
{
unsigned int nWidth; ///< [IN] \~chinese 图像宽度[16,65535] \~english Image Width
unsigned int nHeight; ///< [IN] \~chinese 图像高度[16,65535] \~english Image Height
enum MvGvspPixelType enPixelType; ///< [IN] \~chinese 像素格式 \~english Pixel format
unsigned char* pSrcBuf; ///< [IN] \~chinese 输入数据缓存 \~english Input data buffer
unsigned int nSrcBufLen; ///< [IN] \~chinese 输入数据长度 \~english Input data length
unsigned char* pDstBuf; ///< [OUT] \~chinese 输出数据缓存 \~english Output data buffer
unsigned int nDstBufSize; ///< [IN] \~chinese 提供的输出缓冲区大小 \~english Provided output buffer size
unsigned int nDstBufLen; ///< [OUT] \~chinese 输出数据长度 \~english Output data length
unsigned char* pCalibBuf; ///< [IN] \~chinese 输入标定表缓存 \~english Input calib buffer
unsigned int nCalibBufLen; ///< [IN] \~chinese 输入标定表缓存长度 \~english Input calib buffer length
unsigned int nRes[8]; ///< \~chinese 预留 \~english Reserved
}MV_CC_LSC_CORRECT_PARAM;
/// \~chinese 某个节点对应的子节点个数最大值 \~english The maximum number of child nodes corresponding to a node
#define MV_MAX_XML_NODE_NUM_C 128
/// \~chinese 节点名称字符串最大长度 \~english The maximum length of node name string
#define MV_MAX_XML_NODE_STRLEN_C 64
/// \~chinese 节点String值最大长度 \~english The maximum length of Node String
#define MV_MAX_XML_STRVALUE_STRLEN_C 64
/// \~chinese 节点描述字段最大长度 \~english The maximum length of the node description field
#define MV_MAX_XML_DISC_STRLEN_C 512
/// \~chinese 最多的单元数 \~english The maximum number of units
#define MV_MAX_XML_ENTRY_NUM 10
/// \~chinese 父节点个数上限 \~english The maximum number of parent nodes
#define MV_MAX_XML_PARENTS_NUM 8
/// \~chinese 每个已经实现单元的名称长度 \~english The length of the name of each unit that has been implemented
#define MV_MAX_XML_SYMBOLIC_STRLEN_C 64
enum MV_XML_Visibility
{
V_Beginner = 0, ///< Always visible
V_Expert = 1, ///< Visible for experts or Gurus
V_Guru = 2, ///< Visible for Gurus
V_Invisible = 3, ///< Not Visible
V_Undefined = 99 ///< Object is not yet initialized
};
/// \~chinese 单个节点基本属性 | en:Single Node Basic Attributes
typedef struct _MV_XML_NODE_FEATURE_
{
enum MV_XML_InterfaceType enType; ///< \~chinese 节点类型 \~english Node Type
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Is visibility
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 节点描述,目前暂不支持 \~english Node Description, NOT SUPPORT NOW
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C]; ///< \~chinese 显示名称 \~english Display Name
char strName[MV_MAX_XML_NODE_STRLEN_C]; ///< \~chinese 节点名 \~english Node Name
char strToolTip[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 提示 \~english Notice
unsigned int nReserved[4];
}MV_XML_NODE_FEATURE;
/// \~chinese 节点列表 | en:Node List
typedef struct _MV_XML_NODES_LIST_
{
unsigned int nNodeNum; ///< \~chinese 节点个数 \~english Node Number
MV_XML_NODE_FEATURE stNodes[MV_MAX_XML_NODE_NUM_C];
}MV_XML_NODES_LIST;
typedef struct _MV_XML_FEATURE_Value_
{
enum MV_XML_InterfaceType enType; ///< \~chinese 节点类型 \~english Node Type
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 节点描述,目前暂不支持 \~english Node Description, NOT SUPPORT NOW
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C]; ///< \~chinese 显示名称 \~english Display Name
char strName[MV_MAX_XML_NODE_STRLEN_C]; ///< \~chinese 节点名 \~english Node Name
char strToolTip[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 提示 \~english Notice
unsigned int nReserved[4];
}MV_XML_FEATURE_Value;
typedef struct _MV_XML_FEATURE_Base_
{
enum MV_XML_AccessMode enAccessMode; ///< \~chinese 访问模式 \~english Access Mode
}MV_XML_FEATURE_Base;
typedef struct _MV_XML_FEATURE_Integer_
{
char strName[MV_MAX_XML_NODE_STRLEN_C];
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C];
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 目前暂不支持 \~english NOT SUPPORT NOW
char strToolTip[MV_MAX_XML_DISC_STRLEN_C];
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Visible
enum MV_XML_AccessMode enAccessMode; ///< \~chinese 访问模式 \~english Access Mode
int bIsLocked; ///< \~chinese 是否锁定。0-否1-是,目前暂不支持 \~english Locked. 0-NO; 1-YES, NOT SUPPORT NOW
int64_t nValue; ///< \~chinese 当前值 \~english Current Value
int64_t nMinValue; ///< \~chinese 最小值 \~english Min Value
int64_t nMaxValue; ///< \~chinese 最大值 \~english Max Value
int64_t nIncrement; ///< \~chinese 增量 \~english Increment
unsigned int nReserved[4];
}MV_XML_FEATURE_Integer;
typedef struct _MV_XML_FEATURE_Boolean_
{
char strName[MV_MAX_XML_NODE_STRLEN_C];
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C];
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 目前暂不支持 \~english NOT SUPPORT NOW
char strToolTip[MV_MAX_XML_DISC_STRLEN_C];
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Visible
enum MV_XML_AccessMode enAccessMode; ///< \~chinese 访问模式 \~english Access Mode
int bIsLocked; ///< \~chinese 是否锁定。0-否1-是,目前暂不支持 \~english Locked. 0-NO; 1-YES, NOT SUPPORT NOW
bool bValue; ///< \~chinese 当前值 \~english Current Value
unsigned int nReserved[4];
}MV_XML_FEATURE_Boolean;
typedef struct _MV_XML_FEATURE_Command_
{
char strName[MV_MAX_XML_NODE_STRLEN_C];
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C];
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 目前暂不支持 \~english NOT SUPPORT NOW
char strToolTip[MV_MAX_XML_DISC_STRLEN_C];
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Visible
enum MV_XML_AccessMode enAccessMode; ///< \~chinese 访问模式 \~english Access Mode
int bIsLocked; ///< \~chinese 是否锁定。0-否1-是,目前暂不支持 \~english Locked. 0-NO; 1-YES, NOT SUPPORT NOW
unsigned int nReserved[4];
}MV_XML_FEATURE_Command;
typedef struct _MV_XML_FEATURE_Float_
{
char strName[MV_MAX_XML_NODE_STRLEN_C];
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C];
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 目前暂不支持 \~english NOT SUPPORT NOW
char strToolTip[MV_MAX_XML_DISC_STRLEN_C];
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Visible
enum MV_XML_AccessMode enAccessMode; ///< \~chinese 访问模式 \~english Access Mode
int bIsLocked; ///< \~chinese 是否锁定。0-否1-是,目前暂不支持 \~english Locked. 0-NO; 1-YES, NOT SUPPORT NOW
double dfValue; ///< \~chinese 当前值 \~english Current Value
double dfMinValue; ///< \~chinese 最小值 \~english Min Value
double dfMaxValue; ///< \~chinese 最大值 \~english Max Value
double dfIncrement; ///< \~chinese 增量 \~english Increment
unsigned int nReserved[4];
}MV_XML_FEATURE_Float;
typedef struct _MV_XML_FEATURE_String_
{
char strName[MV_MAX_XML_NODE_STRLEN_C];
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C];
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 目前暂不支持 \~english NOT SUPPORT NOW
char strToolTip[MV_MAX_XML_DISC_STRLEN_C];
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Visible
enum MV_XML_AccessMode enAccessMode; ///< \~chinese 访问模式 \~english Access Mode
int bIsLocked; ///< \~chinese 是否锁定。0-否1-是,目前暂不支持 \~english Locked. 0-NO; 1-YES, NOT SUPPORT NOW
char strValue[MV_MAX_XML_STRVALUE_STRLEN_C]; ///< \~chinese 当前值 \~english Current Value
unsigned int nReserved[4];
}MV_XML_FEATURE_String;
typedef struct _MV_XML_FEATURE_Register_
{
char strName[MV_MAX_XML_NODE_STRLEN_C];
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C];
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 目前暂不支持 \~english NOT SUPPORT NOW
char strToolTip[MV_MAX_XML_DISC_STRLEN_C];
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Visible
enum MV_XML_AccessMode enAccessMode; ///< \~chinese 访问模式 \~english Access Mode
int bIsLocked; ///< \~chinese 是否锁定。0-否1-是,目前暂不支持 \~english Locked. 0-NO; 1-YES, NOT SUPPORT NOW
int64_t nAddrValue; ///< \~chinese 当前值 \~english Current Value
unsigned int nReserved[4];
}MV_XML_FEATURE_Register;
typedef struct _MV_XML_FEATURE_Category_
{
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 节点描述 目前暂不支持 \~english Node Description, NOT SUPPORT NOW
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C]; ///< \~chinese 显示名称 \~english Display Name
char strName[MV_MAX_XML_NODE_STRLEN_C]; ///< \~chinese 节点名 \~english Node Name
char strToolTip[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 提示 \~english Notice
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Visible
unsigned int nReserved[4];
}MV_XML_FEATURE_Category;
typedef struct _MV_XML_FEATURE_EnumEntry_
{
char strName[MV_MAX_XML_NODE_STRLEN_C];
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C];
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 目前暂不支持 \~english NOT SUPPORT NOW
char strToolTip[MV_MAX_XML_DISC_STRLEN_C];
int bIsImplemented;
int nParentsNum;
MV_XML_NODE_FEATURE stParentsList[MV_MAX_XML_PARENTS_NUM];
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Visible
int64_t nValue; ///< \~chinese 当前值 \~english Current Value
enum MV_XML_AccessMode enAccessMode; ///< \~chinese 访问模式 \~english Access Mode
int bIsLocked; ///< \~chinese 是否锁定。0-否1-是,目前暂不支持 \~english Locked. 0-NO; 1-YES, NOT SUPPORT NOW
int nReserved[8];
}MV_XML_FEATURE_EnumEntry;
typedef struct _MV_XML_FEATURE_Enumeration_
{
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Visible
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 节点描述 目前暂不支持 \~english Node Description, NOT SUPPORT NOW
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C]; ///< \~chinese 显示名称 \~english Display Name
char strName[MV_MAX_XML_NODE_STRLEN_C]; ///< \~chinese 节点名 \~english Node Name
char strToolTip[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 提示 \~english Notice
int nSymbolicNum; ///< \~chinese ymbolic数 \~english Symbolic Number
char strCurrentSymbolic[MV_MAX_XML_SYMBOLIC_STRLEN_C];///< \~chinese 当前Symbolic索引 \~english Current Symbolic Index
char strSymbolic[MV_MAX_XML_SYMBOLIC_NUM][MV_MAX_XML_SYMBOLIC_STRLEN_C];
enum MV_XML_AccessMode enAccessMode; ////< \~chinese 访问模式 \~english Access Mode
int bIsLocked; ///< \~chinese 是否锁定。0-否1-是,目前暂不支持 \~english Locked. 0-NO; 1-YES, NOT SUPPORT NOW
int64_t nValue; ///< \~chinese 当前值 \~english Current Value
unsigned int nReserved[4];
}MV_XML_FEATURE_Enumeration;
typedef struct _MV_XML_FEATURE_Port_
{
enum MV_XML_Visibility enVisivility; ///< \~chinese 是否可见 \~english Visible
char strDescription[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 节点描述,目前暂不支持 \~english Node Description, NOT SUPPORT NOW
char strDisplayName[MV_MAX_XML_NODE_STRLEN_C]; ///< \~chinese 显示名称 \~english Display Name
char strName[MV_MAX_XML_NODE_STRLEN_C]; ///< \~chinese 节点名 \~english Node Name
char strToolTip[MV_MAX_XML_DISC_STRLEN_C]; ///< \~chinese 提示 \~english Notice
enum MV_XML_AccessMode enAccessMode; ///< \~chinese 访问模式 \~english Access Mode
int bIsLocked; ///< \~chinese 是否锁定。0-否1-是,目前暂不支持 \~english Locked. 0-NO; 1-YES, NOT SUPPORT NOW
unsigned int nReserved[4];
}MV_XML_FEATURE_Port;
typedef struct _MV_XML_CAMERA_FEATURE_
{
enum MV_XML_InterfaceType enType;
union
{
MV_XML_FEATURE_Integer stIntegerFeature;
MV_XML_FEATURE_Float stFloatFeature;
MV_XML_FEATURE_Enumeration stEnumerationFeature;
MV_XML_FEATURE_String stStringFeature;
}SpecialFeature;
}MV_XML_CAMERA_FEATURE;
#endif /* _MV_OBSOLETE_CAM_PARAMS_H_ */

188
MVS/Includes/PixelType.h Normal file
View File

@@ -0,0 +1,188 @@
#ifndef _MV_PIXEL_TYPE_H_
#define _MV_PIXEL_TYPE_H_
/************************************************************************/
/* GigE Vision (2.0.03) PIXEL FORMATS */
/************************************************************************/
// Indicate if pixel is monochrome or RGB
#define MV_GVSP_PIX_MONO 0x01000000
#define MV_GVSP_PIX_RGB 0x02000000 // deprecated in version 1.1
#define MV_GVSP_PIX_COLOR 0x02000000
#define MV_GVSP_PIX_CUSTOM 0x80000000
#define MV_GVSP_PIX_COLOR_MASK 0xFF000000
// Indicate effective number of bits occupied by the pixel (including padding).
// This can be used to compute amount of memory required to store an image.
#define MV_PIXEL_BIT_COUNT(n) ((n) << 16)
#define MV_GVSP_PIX_EFFECTIVE_PIXEL_SIZE_MASK 0x00FF0000
#define MV_GVSP_PIX_EFFECTIVE_PIXEL_SIZE_SHIFT 16
// Pixel ID: lower 16-bit of the pixel formats
#define MV_GVSP_PIX_ID_MASK 0x0000FFFF
#define MV_GVSP_PIX_COUNT 0x46 // next Pixel ID available
enum MvGvspPixelType
{
// Undefined pixel type
PixelType_Gvsp_Undefined = 0xFFFFFFFF,
// Mono buffer format defines
PixelType_Gvsp_Mono1p = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(1) | 0x0037),
PixelType_Gvsp_Mono2p = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(2) | 0x0038),
PixelType_Gvsp_Mono4p = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(4) | 0x0039),
PixelType_Gvsp_Mono8 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x0001),
PixelType_Gvsp_Mono8_Signed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x0002),
PixelType_Gvsp_Mono10 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0003),
PixelType_Gvsp_Mono10_Packed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0004),
PixelType_Gvsp_Mono12 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0005),
PixelType_Gvsp_Mono12_Packed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0006),
PixelType_Gvsp_Mono14 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0025),
PixelType_Gvsp_Mono16 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0007),
// Bayer buffer format defines
PixelType_Gvsp_BayerGR8 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x0008),
PixelType_Gvsp_BayerRG8 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x0009),
PixelType_Gvsp_BayerGB8 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x000A),
PixelType_Gvsp_BayerBG8 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x000B),
PixelType_Gvsp_BayerRBGG8 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x0046),
PixelType_Gvsp_BayerGR10 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x000C),
PixelType_Gvsp_BayerRG10 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x000D),
PixelType_Gvsp_BayerGB10 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x000E),
PixelType_Gvsp_BayerBG10 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x000F),
PixelType_Gvsp_BayerGR12 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0010),
PixelType_Gvsp_BayerRG12 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0011),
PixelType_Gvsp_BayerGB12 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0012),
PixelType_Gvsp_BayerBG12 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0013),
PixelType_Gvsp_BayerGR10_Packed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0026),
PixelType_Gvsp_BayerRG10_Packed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0027),
PixelType_Gvsp_BayerGB10_Packed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0028),
PixelType_Gvsp_BayerBG10_Packed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0029),
PixelType_Gvsp_BayerGR12_Packed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x002A),
PixelType_Gvsp_BayerRG12_Packed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x002B),
PixelType_Gvsp_BayerGB12_Packed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x002C),
PixelType_Gvsp_BayerBG12_Packed = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x002D),
PixelType_Gvsp_BayerGR16 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x002E),
PixelType_Gvsp_BayerRG16 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x002F),
PixelType_Gvsp_BayerGB16 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0030),
PixelType_Gvsp_BayerBG16 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0031),
// RGB Packed buffer format defines
PixelType_Gvsp_RGB8_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(24) | 0x0014),
PixelType_Gvsp_BGR8_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(24) | 0x0015),
PixelType_Gvsp_RGBA8_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(32) | 0x0016),
PixelType_Gvsp_BGRA8_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(32) | 0x0017),
PixelType_Gvsp_RGB10_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x0018),
PixelType_Gvsp_BGR10_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x0019),
PixelType_Gvsp_RGB12_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x001A),
PixelType_Gvsp_BGR12_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x001B),
PixelType_Gvsp_RGB16_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x0033),
PixelType_Gvsp_BGR16_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x004B),
PixelType_Gvsp_RGBA16_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(64) | 0x0064),
PixelType_Gvsp_BGRA16_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(64) | 0x0051),
PixelType_Gvsp_RGB10V1_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(32) | 0x001C),
PixelType_Gvsp_RGB10V2_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(32) | 0x001D),
PixelType_Gvsp_RGB12V1_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(36) | 0X0034),
PixelType_Gvsp_RGB565_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x0035),
PixelType_Gvsp_BGR565_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0X0036),
// YUV Packed buffer format defines
PixelType_Gvsp_YUV411_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(12) | 0x001E),
PixelType_Gvsp_YUV422_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x001F),
PixelType_Gvsp_YUV422_YUYV_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x0032),
PixelType_Gvsp_YUV444_Packed = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(24) | 0x0020),
PixelType_Gvsp_YCBCR8_CBYCR = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(24) | 0x003A),
PixelType_Gvsp_YCBCR422_8 = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x003B),
PixelType_Gvsp_YCBCR422_8_CBYCRY = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x0043),
PixelType_Gvsp_YCBCR411_8_CBYYCRYY = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(12) | 0x003C),
PixelType_Gvsp_YCBCR601_8_CBYCR = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(24) | 0x003D),
PixelType_Gvsp_YCBCR601_422_8 = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x003E),
PixelType_Gvsp_YCBCR601_422_8_CBYCRY = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x0044),
PixelType_Gvsp_YCBCR601_411_8_CBYYCRYY = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(12) | 0x003F),
PixelType_Gvsp_YCBCR709_8_CBYCR = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(24) | 0x0040),
PixelType_Gvsp_YCBCR709_422_8 = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x0041),
PixelType_Gvsp_YCBCR709_422_8_CBYCRY = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x0045),
PixelType_Gvsp_YCBCR709_411_8_CBYYCRYY = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(12) | 0x0042),
// RGB Planar buffer format defines
PixelType_Gvsp_RGB8_Planar = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(24) | 0x0021),
PixelType_Gvsp_RGB10_Planar = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x0022),
PixelType_Gvsp_RGB12_Planar = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x0023),
PixelType_Gvsp_RGB16_Planar = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x0024),
// 自定义的图片格式
PixelType_Gvsp_Jpeg = (MV_GVSP_PIX_CUSTOM | MV_PIXEL_BIT_COUNT(24) | 0x0001),
PixelType_Gvsp_Coord3D_ABC32f = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(96) | 0x00C0),//0x026000C0
PixelType_Gvsp_Coord3D_ABC32f_Planar = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(96) | 0x00C1),//0x026000C1
// 该值被废弃请参考PixelType_Gvsp_Coord3D_AC32f_64; the value is discarded
PixelType_Gvsp_Coord3D_AC32f = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(40) | 0x00C2),
// 该值被废弃; the value is discarded (已放入Chunkdata)
PixelType_Gvsp_COORD3D_DEPTH_PLUS_MASK = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(28) | 0x0001),
PixelType_Gvsp_Coord3D_ABC32 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(96) | 0x3001),//0x82603001
PixelType_Gvsp_Coord3D_AB32f = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(64) | 0x3002),//0x82403002
PixelType_Gvsp_Coord3D_AB32 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(64) | 0x3003),//0x82403003
PixelType_Gvsp_Coord3D_AC32f_64 = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(64) | 0x00C2),//0x024000C2
PixelType_Gvsp_Coord3D_AC32f_Planar = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(64) | 0x00C3),//0x024000C3
PixelType_Gvsp_Coord3D_AC32 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(64) | 0x3004),//0x82403004
PixelType_Gvsp_Coord3D_A32f = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(32) | 0x00BD),//0x012000BD
PixelType_Gvsp_Coord3D_A32 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(32) | 0x3005),//0x81203005
PixelType_Gvsp_Coord3D_C32f = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(32) | 0x00BF),//0x012000BF
PixelType_Gvsp_Coord3D_C32 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(32) | 0x3006),//0x81203006
PixelType_Gvsp_Coord3D_ABC16 = (MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x00B9),//0x023000B9
PixelType_Gvsp_Coord3D_C16 = (MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x00B8),//0x011000B8
//无损压缩像素格式定义
PixelType_Gvsp_HB_Mono8 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x0001),
PixelType_Gvsp_HB_Mono10 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0003),
PixelType_Gvsp_HB_Mono10_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0004),
PixelType_Gvsp_HB_Mono12 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0005),
PixelType_Gvsp_HB_Mono12_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0006),
PixelType_Gvsp_HB_Mono16 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0007),
PixelType_Gvsp_HB_BayerGR8 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x0008),
PixelType_Gvsp_HB_BayerRG8 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x0009),
PixelType_Gvsp_HB_BayerGB8 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x000A),
PixelType_Gvsp_HB_BayerBG8 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x000B),
PixelType_Gvsp_HB_BayerRBGG8 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(8) | 0x0046),
PixelType_Gvsp_HB_BayerGR10 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x000C),
PixelType_Gvsp_HB_BayerRG10 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x000D),
PixelType_Gvsp_HB_BayerGB10 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x000E),
PixelType_Gvsp_HB_BayerBG10 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x000F),
PixelType_Gvsp_HB_BayerGR12 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0010),
PixelType_Gvsp_HB_BayerRG12 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0011),
PixelType_Gvsp_HB_BayerGB12 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0012),
PixelType_Gvsp_HB_BayerBG12 = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(16) | 0x0013),
PixelType_Gvsp_HB_BayerGR10_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0026),
PixelType_Gvsp_HB_BayerRG10_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0027),
PixelType_Gvsp_HB_BayerGB10_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0028),
PixelType_Gvsp_HB_BayerBG10_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x0029),
PixelType_Gvsp_HB_BayerGR12_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x002A),
PixelType_Gvsp_HB_BayerRG12_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x002B),
PixelType_Gvsp_HB_BayerGB12_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x002C),
PixelType_Gvsp_HB_BayerBG12_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_MONO | MV_PIXEL_BIT_COUNT(12) | 0x002D),
PixelType_Gvsp_HB_YUV422_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x001F),
PixelType_Gvsp_HB_YUV422_YUYV_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(16) | 0x0032),
PixelType_Gvsp_HB_RGB8_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(24) | 0x0014),
PixelType_Gvsp_HB_BGR8_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(24) | 0x0015),
PixelType_Gvsp_HB_RGBA8_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(32) | 0x0016),
PixelType_Gvsp_HB_BGRA8_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(32) | 0x0017),
PixelType_Gvsp_HB_RGB16_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x0033),
PixelType_Gvsp_HB_BGR16_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(48) | 0x004B),
PixelType_Gvsp_HB_RGBA16_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(64) | 0x0064),
PixelType_Gvsp_HB_BGRA16_Packed = (MV_GVSP_PIX_CUSTOM | MV_GVSP_PIX_COLOR | MV_PIXEL_BIT_COUNT(64) | 0x0051),
};
#ifdef WIN32
#define __int64 long long
typedef __int64 int64_t;
typedef unsigned __int64 uint64_t;
#else
#include <stdint.h>
#endif
#endif /* _MV_PIXEL_TYPE_H_ */

View File

@@ -0,0 +1 @@
implib MvCameraControlBC.lib MvCameraControl.dll

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1 @@
mkexp MvCameraControlBC.a MvCameraControl.dll

Binary file not shown.

Binary file not shown.

202
OpenCV/LICENSE Normal file
View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -0,0 +1,15 @@
set(OpenCV_VERSION 4.6.0)
set(PACKAGE_VERSION ${OpenCV_VERSION})
set(PACKAGE_VERSION_EXACT False)
set(PACKAGE_VERSION_COMPATIBLE False)
if(PACKAGE_FIND_VERSION VERSION_EQUAL PACKAGE_VERSION)
set(PACKAGE_VERSION_EXACT True)
set(PACKAGE_VERSION_COMPATIBLE True)
endif()
if(PACKAGE_FIND_VERSION_MAJOR EQUAL 4
AND PACKAGE_FIND_VERSION VERSION_LESS PACKAGE_VERSION)
set(PACKAGE_VERSION_COMPATIBLE True)
endif()

196
OpenCV/OpenCVConfig.cmake Normal file
View File

@@ -0,0 +1,196 @@
# ===================================================================================
# The OpenCV CMake configuration file
#
# ** File generated automatically, do not modify **
#
# Usage from an external project:
# In your CMakeLists.txt, add these lines:
#
# FIND_PACKAGE(OpenCV REQUIRED)
# TARGET_LINK_LIBRARIES(MY_TARGET_NAME ${OpenCV_LIBS})
#
# Or you can search for specific OpenCV modules:
#
# FIND_PACKAGE(OpenCV REQUIRED core imgcodecs)
#
# If the module is found then OPENCV_<MODULE>_FOUND is set to TRUE.
#
# This file will define the following variables:
# - OpenCV_LIBS : The list of libraries to link against.
# - OpenCV_INCLUDE_DIRS : The OpenCV include directories.
# - OpenCV_COMPUTE_CAPABILITIES : The version of compute capability
# - OpenCV_VERSION : The version of this OpenCV build: "4.6.0"
# - OpenCV_VERSION_MAJOR : Major version part of OpenCV_VERSION: "4"
# - OpenCV_VERSION_MINOR : Minor version part of OpenCV_VERSION: "6"
# - OpenCV_VERSION_PATCH : Patch version part of OpenCV_VERSION: "0"
# - OpenCV_VERSION_STATUS : Development status of this build: ""
#
# Advanced variables:
# - OpenCV_SHARED
#
# ===================================================================================
#
# Windows pack specific options:
# - OpenCV_STATIC
# - OpenCV_CUDA
if(CMAKE_VERSION VERSION_GREATER 2.6)
get_property(OpenCV_LANGUAGES GLOBAL PROPERTY ENABLED_LANGUAGES)
if(NOT ";${OpenCV_LANGUAGES};" MATCHES ";CXX;")
enable_language(CXX)
endif()
endif()
if(NOT DEFINED OpenCV_STATIC)
# look for global setting
if(NOT DEFINED BUILD_SHARED_LIBS OR BUILD_SHARED_LIBS)
set(OpenCV_STATIC OFF)
else()
set(OpenCV_STATIC ON)
endif()
endif()
if(NOT DEFINED OpenCV_CUDA)
# if user' app uses CUDA, then it probably wants CUDA-enabled OpenCV binaries
if(CUDA_FOUND)
set(OpenCV_CUDA ON)
endif()
endif()
function(check_one_config RES)
set(${RES} "" PARENT_SCOPE)
if(NOT OpenCV_RUNTIME OR NOT OpenCV_ARCH)
return()
endif()
set(candidates)
if(OpenCV_STATIC)
list(APPEND candidates "${OpenCV_ARCH}/${OpenCV_RUNTIME}/staticlib")
endif()
if(OpenCV_CUDA)
list(APPEND candidates "gpu/${OpenCV_ARCH}/${OpenCV_RUNTIME}/lib")
endif()
if(OpenCV_CUDA AND OpenCV_STATIC)
list(APPEND candidates "gpu/${OpenCV_ARCH}/${OpenCV_RUNTIME}/staticlib")
endif()
list(APPEND candidates "${OpenCV_ARCH}/${OpenCV_RUNTIME}/lib")
foreach(c ${candidates})
set(p "${OpenCV_CONFIG_PATH}/${c}")
if(EXISTS "${p}/OpenCVConfig.cmake")
set(${RES} "${p}" PARENT_SCOPE)
return()
endif()
endforeach()
endfunction()
get_filename_component(OpenCV_CONFIG_PATH "${CMAKE_CURRENT_LIST_FILE}" DIRECTORY)
if((NOT DEFINED CMAKE_SYSTEM_PROCESSOR OR CMAKE_SYSTEM_PROCESSOR STREQUAL "")
AND NOT OPENCV_SUPPRESS_MESSAGE_MISSING_CMAKE_SYSTEM_PROCESSOR)
message(WARNING "OpenCV: CMAKE_SYSTEM_PROCESSOR is not defined. Perhaps CMake toolchain is broken")
endif()
if(NOT DEFINED CMAKE_SIZEOF_VOID_P
AND NOT OPENCV_SUPPRESS_MESSAGE_MISSING_CMAKE_SIZEOF_VOID_P)
message(WARNING "OpenCV: CMAKE_SIZEOF_VOID_P is not defined. Perhaps CMake toolchain is broken")
endif()
if(DEFINED OpenCV_ARCH AND DEFINED OpenCV_RUNTIME)
# custom overridden values
elseif(MSVC)
# see Modules/CMakeGenericSystem.cmake
if("${CMAKE_GENERATOR}" MATCHES "(Win64|IA64)")
set(OpenCV_ARCH "x64")
elseif("${CMAKE_GENERATOR_PLATFORM}" MATCHES "ARM64")
set(OpenCV_ARCH "ARM64")
elseif("${CMAKE_GENERATOR}" MATCHES "ARM")
set(OpenCV_ARCH "ARM")
elseif("${CMAKE_SIZEOF_VOID_P}" STREQUAL "8")
set(OpenCV_ARCH "x64")
else()
set(OpenCV_ARCH x86)
endif()
if(MSVC_VERSION EQUAL 1400)
set(OpenCV_RUNTIME vc8)
elseif(MSVC_VERSION EQUAL 1500)
set(OpenCV_RUNTIME vc9)
elseif(MSVC_VERSION EQUAL 1600)
set(OpenCV_RUNTIME vc10)
elseif(MSVC_VERSION EQUAL 1700)
set(OpenCV_RUNTIME vc11)
elseif(MSVC_VERSION EQUAL 1800)
set(OpenCV_RUNTIME vc12)
elseif(MSVC_VERSION EQUAL 1900)
set(OpenCV_RUNTIME vc14)
elseif(MSVC_VERSION MATCHES "^191[0-9]$")
set(OpenCV_RUNTIME vc15)
check_one_config(has_VS2017)
if(NOT has_VS2017)
set(OpenCV_RUNTIME vc14) # selecting previous compatible runtime version
endif()
elseif(MSVC_VERSION MATCHES "^192[0-9]$")
set(OpenCV_RUNTIME vc16)
check_one_config(has_VS2019)
if(NOT has_VS2019)
set(OpenCV_RUNTIME vc15) # selecting previous compatible runtime version
check_one_config(has_VS2017)
if(NOT has_VS2017)
set(OpenCV_RUNTIME vc14) # selecting previous compatible runtime version
endif()
endif()
elseif(MSVC_VERSION MATCHES "^193[0-9]$")
set(OpenCV_RUNTIME vc17)
check_one_config(has_VS2022)
if(NOT has_VS2022)
set(OpenCV_RUNTIME vc16)
check_one_config(has_VS2019)
if(NOT has_VS2019)
set(OpenCV_RUNTIME vc15) # selecting previous compatible runtime version
check_one_config(has_VS2017)
if(NOT has_VS2017)
set(OpenCV_RUNTIME vc14) # selecting previous compatible runtime version
endif()
endif()
endif()
endif()
elseif(MINGW)
set(OpenCV_RUNTIME mingw)
if(CMAKE_SYSTEM_PROCESSOR MATCHES "amd64.*|x86_64.*|AMD64.*")
set(OpenCV_ARCH x64)
else()
set(OpenCV_ARCH x86)
endif()
endif()
check_one_config(OpenCV_LIB_PATH)
if(NOT OpenCV_FIND_QUIETLY)
message(STATUS "OpenCV ARCH: ${OpenCV_ARCH}")
message(STATUS "OpenCV RUNTIME: ${OpenCV_RUNTIME}")
message(STATUS "OpenCV STATIC: ${OpenCV_STATIC}")
endif()
if(OpenCV_LIB_PATH AND EXISTS "${OpenCV_LIB_PATH}/OpenCVConfig.cmake")
include("${OpenCV_LIB_PATH}/OpenCVConfig.cmake")
if(NOT OpenCV_FIND_QUIETLY)
message(STATUS "Found OpenCV ${OpenCV_VERSION} in ${OpenCV_LIB_PATH}")
if(NOT OpenCV_LIB_PATH MATCHES "/staticlib")
get_filename_component(_OpenCV_LIB_PATH "${OpenCV_LIB_PATH}/../bin" ABSOLUTE)
file(TO_NATIVE_PATH "${_OpenCV_LIB_PATH}" _OpenCV_LIB_PATH)
message(STATUS "You might need to add ${_OpenCV_LIB_PATH} to your PATH to be able to run your applications.")
if(OpenCV_LIB_PATH MATCHES "/gpu/")
string(REPLACE "\\gpu" "" _OpenCV_LIB_PATH2 "${_OpenCV_LIB_PATH}")
message(STATUS "GPU support is enabled so you might also need ${_OpenCV_LIB_PATH2} in your PATH (it must go after the ${_OpenCV_LIB_PATH}).")
endif()
endif()
endif()
else()
if(NOT OpenCV_FIND_QUIETLY)
message(WARNING
"Found OpenCV Windows Pack but it has no binaries compatible with your configuration.
You should manually point CMake variable OpenCV_DIR to your build of OpenCV library."
)
endif()
set(OpenCV_FOUND FALSE)
endif()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,36 @@
License for Berkeley SoftFloat Release 3c
John R. Hauser
2017 February 10
The following applies to the whole of SoftFloat Release 3c as well as to
each source file individually.
Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
University of California. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions, and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -0,0 +1,520 @@
Copyright (C) 2001 Fabrice Bellard
FFmpeg is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
FFmpeg is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with FFmpeg; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
==================================================================================
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!

View File

@@ -0,0 +1,37 @@
* On Linux and other Unix flavors OpenCV uses default or user-built ffmpeg/libav libraries.
If user builds ffmpeg/libav from source and wants OpenCV to stay BSD library, not GPL/LGPL,
he/she should use --enabled-shared configure flag and make sure that no GPL components are
enabled (some notable examples are x264 (H264 encoder) and libac3 (Dolby AC3 audio codec)).
See https://www.ffmpeg.org/legal.html for details.
If you want to play very safe and do not want to use FFMPEG at all, regardless of whether it's installed on
your system or not, configure and build OpenCV using CMake with WITH_FFMPEG=OFF flag. OpenCV will then use
AVFoundation (OSX), GStreamer (Linux) or other available backends supported by opencv_videoio module.
There is also our self-contained motion jpeg codec, which you can use without any worries.
It handles CV_FOURCC('M', 'J', 'P', 'G') streams within an AVI container (".avi").
* On Windows OpenCV uses pre-built ffmpeg binaries, built with proper flags (without GPL components) and
wrapped with simple, stable OpenCV-compatible API.
The binaries are opencv_videoio_ffmpeg.dll (version for 32-bit Windows) and
opencv_videoio_ffmpeg_64.dll (version for 64-bit Windows).
The pre-built opencv_videoio_ffmpeg*.dll is:
* LGPL library, not BSD libraries.
* Loaded at runtime by opencv_videoio module.
If it succeeds, ffmpeg can be used to decode/encode videos;
otherwise, other API is used.
FFMPEG build includes support for H264 encoder based on the OpenH264 library.
OpenH264 Video Codec provided by Cisco Systems, Inc.
See https://github.com/cisco/openh264/releases for details and OpenH264 license.
OpenH264 library should be installed separatelly. Downloaded binary file can be placed into global system path
(System32 or SysWOW64) or near application binaries (check documentation of "LoadLibrary" Win32 function from MSDN).
Or you can specify location of binary file via OPENH264_LIBRARY environment variable.
If LGPL/GPL software can not be supplied with your OpenCV-based product, simply exclude
opencv_videoio_ffmpeg*.dll from your distribution; OpenCV will stay fully functional except for the ability to
decode/encode videos using FFMPEG (though, it may still be able to do that using other API,
such as Video for Windows, Windows Media Foundation or our self-contained motion jpeg codec).
See license.txt for the FFMPEG copyright notice and the licensing terms.

View File

@@ -0,0 +1,132 @@
libjpeg-turbo Licenses
======================
libjpeg-turbo is covered by three compatible BSD-style open source licenses:
- The IJG (Independent JPEG Group) License, which is listed in
[README.ijg](README.ijg)
This license applies to the libjpeg API library and associated programs
(any code inherited from libjpeg, and any modifications to that code.)
- The Modified (3-clause) BSD License, which is listed below
This license covers the TurboJPEG API library and associated programs, as
well as the build system.
- The [zlib License](https://opensource.org/licenses/Zlib)
This license is a subset of the other two, and it covers the libjpeg-turbo
SIMD extensions.
Complying with the libjpeg-turbo Licenses
=========================================
This section provides a roll-up of the libjpeg-turbo licensing terms, to the
best of our understanding.
1. If you are distributing a modified version of the libjpeg-turbo source,
then:
1. You cannot alter or remove any existing copyright or license notices
from the source.
**Origin**
- Clause 1 of the IJG License
- Clause 1 of the Modified BSD License
- Clauses 1 and 3 of the zlib License
2. You must add your own copyright notice to the header of each source
file you modified, so others can tell that you modified that file (if
there is not an existing copyright header in that file, then you can
simply add a notice stating that you modified the file.)
**Origin**
- Clause 1 of the IJG License
- Clause 2 of the zlib License
3. You must include the IJG README file, and you must not alter any of the
copyright or license text in that file.
**Origin**
- Clause 1 of the IJG License
2. If you are distributing only libjpeg-turbo binaries without the source, or
if you are distributing an application that statically links with
libjpeg-turbo, then:
1. Your product documentation must include a message stating:
This software is based in part on the work of the Independent JPEG
Group.
**Origin**
- Clause 2 of the IJG license
2. If your binary distribution includes or uses the TurboJPEG API, then
your product documentation must include the text of the Modified BSD
License (see below.)
**Origin**
- Clause 2 of the Modified BSD License
3. You cannot use the name of the IJG or The libjpeg-turbo Project or the
contributors thereof in advertising, publicity, etc.
**Origin**
- IJG License
- Clause 3 of the Modified BSD License
4. The IJG and The libjpeg-turbo Project do not warrant libjpeg-turbo to be
free of defects, nor do we accept any liability for undesirable
consequences resulting from your use of the software.
**Origin**
- IJG License
- Modified BSD License
- zlib License
The Modified (3-clause) BSD License
===================================
Copyright (C)2009-2021 D. R. Commander. All Rights Reserved.<br>
Copyright (C)2015 Viktor Szathmáry. All Rights Reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
- Neither the name of the libjpeg-turbo Project nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS",
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
Why Three Licenses?
===================
The zlib License could have been used instead of the Modified (3-clause) BSD
License, and since the IJG License effectively subsumes the distribution
conditions of the zlib License, this would have effectively placed
libjpeg-turbo binary distributions under the IJG License. However, the IJG
License specifically refers to the Independent JPEG Group and does not extend
attribution and endorsement protections to other entities. Thus, it was
desirable to choose a license that granted us the same protections for new code
that were granted to the IJG for code derived from their software.

View File

@@ -0,0 +1,258 @@
libjpeg-turbo note: This file has been modified by The libjpeg-turbo Project
to include only information relevant to libjpeg-turbo, to wordsmith certain
sections, and to remove impolitic language that existed in the libjpeg v8
README. It is included only for reference. Please see README.md for
information specific to libjpeg-turbo.
The Independent JPEG Group's JPEG software
==========================================
This distribution contains a release of the Independent JPEG Group's free JPEG
software. You are welcome to redistribute this software and to use it for any
purpose, subject to the conditions under LEGAL ISSUES, below.
This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,
Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,
Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers,
and other members of the Independent JPEG Group.
IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee
(also known as JPEG, together with ITU-T SG16).
DOCUMENTATION ROADMAP
=====================
This file contains the following sections:
OVERVIEW General description of JPEG and the IJG software.
LEGAL ISSUES Copyright, lack of warranty, terms of distribution.
REFERENCES Where to learn more about JPEG.
ARCHIVE LOCATIONS Where to find newer versions of this software.
FILE FORMAT WARS Software *not* to get.
TO DO Plans for future IJG releases.
Other documentation files in the distribution are:
User documentation:
usage.txt Usage instructions for cjpeg, djpeg, jpegtran,
rdjpgcom, and wrjpgcom.
*.1 Unix-style man pages for programs (same info as usage.txt).
wizard.txt Advanced usage instructions for JPEG wizards only.
change.log Version-to-version change highlights.
Programmer and internal documentation:
libjpeg.txt How to use the JPEG library in your own programs.
example.txt Sample code for calling the JPEG library.
structure.txt Overview of the JPEG library's internal structure.
coderules.txt Coding style rules --- please read if you contribute code.
Please read at least usage.txt. Some information can also be found in the JPEG
FAQ (Frequently Asked Questions) article. See ARCHIVE LOCATIONS below to find
out where to obtain the FAQ article.
If you want to understand how the JPEG code works, we suggest reading one or
more of the REFERENCES, then looking at the documentation files (in roughly
the order listed) before diving into the code.
OVERVIEW
========
This package contains C software to implement JPEG image encoding, decoding,
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression
method for full-color and grayscale images. JPEG's strong suit is compressing
photographic images or other types of images that have smooth color and
brightness transitions between neighboring pixels. Images with sharp lines or
other abrupt features may not compress well with JPEG, and a higher JPEG
quality may have to be used to avoid visible compression artifacts with such
images.
JPEG is lossy, meaning that the output pixels are not necessarily identical to
the input pixels. However, on photographic content and other "smooth" images,
very good compression ratios can be obtained with no visible compression
artifacts, and extremely high compression ratios are possible if you are
willing to sacrifice image quality (by reducing the "quality" setting in the
compressor.)
This software implements JPEG baseline, extended-sequential, and progressive
compression processes. Provision is made for supporting all variants of these
processes, although some uncommon parameter settings aren't implemented yet.
We have made no provision for supporting the hierarchical or lossless
processes defined in the standard.
We provide a set of library routines for reading and writing JPEG image files,
plus two sample applications "cjpeg" and "djpeg", which use the library to
perform conversion between JPEG and some other popular image file formats.
The library is intended to be reused in other applications.
In order to support file conversion and viewing software, we have included
considerable functionality beyond the bare JPEG coding/decoding capability;
for example, the color quantization modules are not strictly part of JPEG
decoding, but they are essential for output to colormapped file formats or
colormapped displays. These extra functions can be compiled out of the
library if not required for a particular application.
We have also included "jpegtran", a utility for lossless transcoding between
different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple
applications for inserting and extracting textual comments in JFIF files.
The emphasis in designing this software has been on achieving portability and
flexibility, while also making it fast enough to be useful. In particular,
the software is not intended to be read as a tutorial on JPEG. (See the
REFERENCES section for introductory material.) Rather, it is intended to
be reliable, portable, industrial-strength code. We do not claim to have
achieved that goal in every aspect of the software, but we strive for it.
We welcome the use of this software as a component of commercial products.
No royalty is required, but we do ask for an acknowledgement in product
documentation, as described under LEGAL ISSUES.
LEGAL ISSUES
============
In plain English:
1. We don't promise that this software works. (But if you find any bugs,
please let us know!)
2. You can use this software for whatever you want. You don't have to pay us.
3. You may not pretend that you wrote this software. If you use it in a
program, you must acknowledge somewhere in your documentation that
you've used the IJG code.
In legalese:
The authors make NO WARRANTY or representation, either express or implied,
with respect to this software, its quality, accuracy, merchantability, or
fitness for a particular purpose. This software is provided "AS IS", and you,
its user, assume the entire risk as to its quality and accuracy.
This software is copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding.
All Rights Reserved except as specified below.
Permission is hereby granted to use, copy, modify, and distribute this
software (or portions thereof) for any purpose, without fee, subject to these
conditions:
(1) If any part of the source code for this software is distributed, then this
README file must be included, with this copyright and no-warranty notice
unaltered; and any additions, deletions, or changes to the original files
must be clearly indicated in accompanying documentation.
(2) If only executable code is distributed, then the accompanying
documentation must state that "this software is based in part on the work of
the Independent JPEG Group".
(3) Permission for use of this software is granted only if the user accepts
full responsibility for any undesirable consequences; the authors accept
NO LIABILITY for damages of any kind.
These conditions apply to any software derived from or based on the IJG code,
not just to the unmodified library. If you use our work, you ought to
acknowledge us.
Permission is NOT granted for the use of any IJG author's name or company name
in advertising or publicity relating to this software or products derived from
it. This software may be referred to only as "the Independent JPEG Group's
software".
We specifically permit and encourage the use of this software as the basis of
commercial products, provided that all warranty or liability claims are
assumed by the product vendor.
REFERENCES
==========
We recommend reading one or more of these references before trying to
understand the innards of the JPEG software.
The best short technical introduction to the JPEG compression algorithm is
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
(Adjacent articles in that issue discuss MPEG motion picture compression,
applications of JPEG, and related topics.) If you don't have the CACM issue
handy, a PDF file containing a revised version of Wallace's article is
available at http://www.ijg.org/files/Wallace.JPEG.pdf. The file (actually
a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
omits the sample images that appeared in CACM, but it includes corrections
and some added material. Note: the Wallace article is copyright ACM and IEEE,
and it may not be used for commercial purposes.
A somewhat less technical, more leisurely introduction to JPEG can be found in
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides
good explanations and example C code for a multitude of compression methods
including JPEG. It is an excellent source if you are comfortable reading C
code but don't know much about data compression in general. The book's JPEG
sample code is far from industrial-strength, but when you are ready to look
at a full implementation, you've got one here...
The best currently available description of JPEG is the textbook "JPEG Still
Image Data Compression Standard" by William B. Pennebaker and Joan L.
Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG
standards (DIS 10918-1 and draft DIS 10918-2).
The original JPEG standard is divided into two parts, Part 1 being the actual
specification, while Part 2 covers compliance testing methods. Part 1 is
titled "Digital Compression and Coding of Continuous-tone Still Images,
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of
Continuous-tone Still Images, Part 2: Compliance testing" and has document
numbers ISO/IEC IS 10918-2, ITU-T T.83.
The JPEG standard does not specify all details of an interchangeable file
format. For the omitted details, we follow the "JFIF" conventions, revision
1.02. JFIF version 1 has been adopted as ISO/IEC 10918-5 (05/2013) and
Recommendation ITU-T T.871 (05/2011): Information technology - Digital
compression and coding of continuous-tone still images: JPEG File Interchange
Format (JFIF). It is available as a free download in PDF file format from
https://www.iso.org/standard/54989.html and http://www.itu.int/rec/T-REC-T.871.
A PDF file of the older JFIF 1.02 specification is available at
http://www.w3.org/Graphics/JPEG/jfif3.pdf.
The TIFF 6.0 file format specification can be obtained from
http://mirrors.ctan.org/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation
scheme found in the TIFF 6.0 spec of 3-June-92 has a number of serious
problems. IJG does not recommend use of the TIFF 6.0 design (TIFF Compression
tag 6). Instead, we recommend the JPEG design proposed by TIFF Technical Note
#2 (Compression tag 7). Copies of this Note can be obtained from
http://www.ijg.org/files/. It is expected that the next revision
of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
Although IJG's own code does not support TIFF/JPEG, the free libtiff library
uses our library to implement TIFF/JPEG per the Note.
ARCHIVE LOCATIONS
=================
The "official" archive site for this software is www.ijg.org.
The most recent released version can always be found there in
directory "files".
The JPEG FAQ (Frequently Asked Questions) article is a source of some
general information about JPEG. It is available at
http://www.faqs.org/faqs/jpeg-faq.
FILE FORMAT COMPATIBILITY
=========================
This software implements ITU T.81 | ISO/IEC 10918 with some extensions from
ITU T.871 | ISO/IEC 10918-5 (JPEG File Interchange Format-- see REFERENCES).
Informally, the term "JPEG image" or "JPEG file" most often refers to JFIF or
a subset thereof, but there are other formats containing the name "JPEG" that
are incompatible with the DCT-based JPEG standard or with JFIF (for instance,
JPEG 2000 and JPEG XR). This software therefore does not support these
formats. Indeed, one of the original reasons for developing this free software
was to help force convergence on a common, interoperable format standard for
JPEG files.
JFIF is a minimal or "low end" representation. TIFF/JPEG (TIFF revision 6.0 as
modified by TIFF Technical Note #2) can be used for "high end" applications
that need to record a lot of additional data about an image.
TO DO
=====
Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org.

View File

@@ -0,0 +1,357 @@
Background
==========
libjpeg-turbo is a JPEG image codec that uses SIMD instructions to accelerate
baseline JPEG compression and decompression on x86, x86-64, Arm, PowerPC, and
MIPS systems, as well as progressive JPEG compression on x86, x86-64, and Arm
systems. On such systems, libjpeg-turbo is generally 2-6x as fast as libjpeg,
all else being equal. On other types of systems, libjpeg-turbo can still
outperform libjpeg by a significant amount, by virtue of its highly-optimized
Huffman coding routines. In many cases, the performance of libjpeg-turbo
rivals that of proprietary high-speed JPEG codecs.
libjpeg-turbo implements both the traditional libjpeg API as well as the less
powerful but more straightforward TurboJPEG API. libjpeg-turbo also features
colorspace extensions that allow it to compress from/decompress to 32-bit and
big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java
interface.
libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated
derivative of libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and
VirtualGL projects made numerous enhancements to the codec in 2009, and in
early 2010, libjpeg-turbo spun off into an independent project, with the goal
of making high-speed JPEG compression/decompression technology available to a
broader range of users and developers.
License
=======
libjpeg-turbo is covered by three compatible BSD-style open source licenses.
Refer to [LICENSE.md](LICENSE.md) for a roll-up of license terms.
Building libjpeg-turbo
======================
Refer to [BUILDING.md](BUILDING.md) for complete instructions.
Using libjpeg-turbo
===================
libjpeg-turbo includes two APIs that can be used to compress and decompress
JPEG images:
- **TurboJPEG API**<br>
This API provides an easy-to-use interface for compressing and decompressing
JPEG images in memory. It also provides some functionality that would not be
straightforward to achieve using the underlying libjpeg API, such as
generating planar YUV images and performing multiple simultaneous lossless
transforms on an image. The Java interface for libjpeg-turbo is written on
top of the TurboJPEG API. The TurboJPEG API is recommended for first-time
users of libjpeg-turbo. Refer to [tjexample.c](tjexample.c) and
[TJExample.java](java/TJExample.java) for examples of its usage and to
<http://libjpeg-turbo.org/Documentation/Documentation> for API documentation.
- **libjpeg API**<br>
This is the de facto industry-standard API for compressing and decompressing
JPEG images. It is more difficult to use than the TurboJPEG API but also
more powerful. The libjpeg API implementation in libjpeg-turbo is both
API/ABI-compatible and mathematically compatible with libjpeg v6b. It can
also optionally be configured to be API/ABI-compatible with libjpeg v7 and v8
(see below.) Refer to [cjpeg.c](cjpeg.c) and [djpeg.c](djpeg.c) for examples
of its usage and to [libjpeg.txt](libjpeg.txt) for API documentation.
There is no significant performance advantage to either API when both are used
to perform similar operations.
Colorspace Extensions
---------------------
libjpeg-turbo includes extensions that allow JPEG images to be compressed
directly from (and decompressed directly to) buffers that use BGR, BGRX,
RGBX, XBGR, and XRGB pixel ordering. This is implemented with ten new
colorspace constants:
JCS_EXT_RGB /* red/green/blue */
JCS_EXT_RGBX /* red/green/blue/x */
JCS_EXT_BGR /* blue/green/red */
JCS_EXT_BGRX /* blue/green/red/x */
JCS_EXT_XBGR /* x/blue/green/red */
JCS_EXT_XRGB /* x/red/green/blue */
JCS_EXT_RGBA /* red/green/blue/alpha */
JCS_EXT_BGRA /* blue/green/red/alpha */
JCS_EXT_ABGR /* alpha/blue/green/red */
JCS_EXT_ARGB /* alpha/red/green/blue */
Setting `cinfo.in_color_space` (compression) or `cinfo.out_color_space`
(decompression) to one of these values will cause libjpeg-turbo to read the
red, green, and blue values from (or write them to) the appropriate position in
the pixel when compressing from/decompressing to an RGB buffer.
Your application can check for the existence of these extensions at compile
time with:
#ifdef JCS_EXTENSIONS
At run time, attempting to use these extensions with a libjpeg implementation
that does not support them will result in a "Bogus input colorspace" error.
Applications can trap this error in order to test whether run-time support is
available for the colorspace extensions.
When using the RGBX, BGRX, XBGR, and XRGB colorspaces during decompression, the
X byte is undefined, and in order to ensure the best performance, libjpeg-turbo
can set that byte to whatever value it wishes. If an application expects the X
byte to be used as an alpha channel, then it should specify `JCS_EXT_RGBA`,
`JCS_EXT_BGRA`, `JCS_EXT_ABGR`, or `JCS_EXT_ARGB`. When these colorspace
constants are used, the X byte is guaranteed to be 0xFF, which is interpreted
as opaque.
Your application can check for the existence of the alpha channel colorspace
extensions at compile time with:
#ifdef JCS_ALPHA_EXTENSIONS
[jcstest.c](jcstest.c), located in the libjpeg-turbo source tree, demonstrates
how to check for the existence of the colorspace extensions at compile time and
run time.
libjpeg v7 and v8 API/ABI Emulation
-----------------------------------
With libjpeg v7 and v8, new features were added that necessitated extending the
compression and decompression structures. Unfortunately, due to the exposed
nature of those structures, extending them also necessitated breaking backward
ABI compatibility with previous libjpeg releases. Thus, programs that were
built to use libjpeg v7 or v8 did not work with libjpeg-turbo, since it is
based on the libjpeg v6b code base. Although libjpeg v7 and v8 are not
as widely used as v6b, enough programs (including a few Linux distros) made
the switch that there was a demand to emulate the libjpeg v7 and v8 ABIs
in libjpeg-turbo. It should be noted, however, that this feature was added
primarily so that applications that had already been compiled to use libjpeg
v7+ could take advantage of accelerated baseline JPEG encoding/decoding
without recompiling. libjpeg-turbo does not claim to support all of the
libjpeg v7+ features, nor to produce identical output to libjpeg v7+ in all
cases (see below.)
By passing an argument of `-DWITH_JPEG7=1` or `-DWITH_JPEG8=1` to `cmake`, you
can build a version of libjpeg-turbo that emulates the libjpeg v7 or v8 ABI, so
that programs that are built against libjpeg v7 or v8 can be run with
libjpeg-turbo. The following section describes which libjpeg v7+ features are
supported and which aren't.
### Support for libjpeg v7 and v8 Features
#### Fully supported
- **libjpeg API: IDCT scaling extensions in decompressor**<br>
libjpeg-turbo supports IDCT scaling with scaling factors of 1/8, 1/4, 3/8,
1/2, 5/8, 3/4, 7/8, 9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8, and 2/1 (only 1/4
and 1/2 are SIMD-accelerated.)
- **libjpeg API: Arithmetic coding**
- **libjpeg API: In-memory source and destination managers**<br>
See notes below.
- **cjpeg: Separate quality settings for luminance and chrominance**<br>
Note that the libpjeg v7+ API was extended to accommodate this feature only
for convenience purposes. It has always been possible to implement this
feature with libjpeg v6b (see rdswitch.c for an example.)
- **cjpeg: 32-bit BMP support**
- **cjpeg: `-rgb` option**
- **jpegtran: Lossless cropping**
- **jpegtran: `-perfect` option**
- **jpegtran: Forcing width/height when performing lossless crop**
- **rdjpgcom: `-raw` option**
- **rdjpgcom: Locale awareness**
#### Not supported
NOTE: As of this writing, extensive research has been conducted into the
usefulness of DCT scaling as a means of data reduction and SmartScale as a
means of quality improvement. Readers are invited to peruse the research at
<http://www.libjpeg-turbo.org/About/SmartScale> and draw their own conclusions,
but it is the general belief of our project that these features have not
demonstrated sufficient usefulness to justify inclusion in libjpeg-turbo.
- **libjpeg API: DCT scaling in compressor**<br>
`cinfo.scale_num` and `cinfo.scale_denom` are silently ignored.
There is no technical reason why DCT scaling could not be supported when
emulating the libjpeg v7+ API/ABI, but without the SmartScale extension (see
below), only scaling factors of 1/2, 8/15, 4/7, 8/13, 2/3, 8/11, 4/5, and
8/9 would be available, which is of limited usefulness.
- **libjpeg API: SmartScale**<br>
`cinfo.block_size` is silently ignored.
SmartScale is an extension to the JPEG format that allows for DCT block
sizes other than 8x8. Providing support for this new format would be
feasible (particularly without full acceleration.) However, until/unless
the format becomes either an official industry standard or, at minimum, an
accepted solution in the community, we are hesitant to implement it, as
there is no sense of whether or how it might change in the future. It is
our belief that SmartScale has not demonstrated sufficient usefulness as a
lossless format nor as a means of quality enhancement, and thus our primary
interest in providing this feature would be as a means of supporting
additional DCT scaling factors.
- **libjpeg API: Fancy downsampling in compressor**<br>
`cinfo.do_fancy_downsampling` is silently ignored.
This requires the DCT scaling feature, which is not supported.
- **jpegtran: Scaling**<br>
This requires both the DCT scaling and SmartScale features, which are not
supported.
- **Lossless RGB JPEG files**<br>
This requires the SmartScale feature, which is not supported.
### What About libjpeg v9?
libjpeg v9 introduced yet another field to the JPEG compression structure
(`color_transform`), thus making the ABI backward incompatible with that of
libjpeg v8. This new field was introduced solely for the purpose of supporting
lossless SmartScale encoding. Furthermore, there was actually no reason to
extend the API in this manner, as the color transform could have just as easily
been activated by way of a new JPEG colorspace constant, thus preserving
backward ABI compatibility.
Our research (see link above) has shown that lossless SmartScale does not
generally accomplish anything that can't already be accomplished better with
existing, standard lossless formats. Therefore, at this time it is our belief
that there is not sufficient technical justification for software projects to
upgrade from libjpeg v8 to libjpeg v9, and thus there is not sufficient
technical justification for us to emulate the libjpeg v9 ABI.
In-Memory Source/Destination Managers
-------------------------------------
By default, libjpeg-turbo 1.3 and later includes the `jpeg_mem_src()` and
`jpeg_mem_dest()` functions, even when not emulating the libjpeg v8 API/ABI.
Previously, it was necessary to build libjpeg-turbo from source with libjpeg v8
API/ABI emulation in order to use the in-memory source/destination managers,
but several projects requested that those functions be included when emulating
the libjpeg v6b API/ABI as well. This allows the use of those functions by
programs that need them, without breaking ABI compatibility for programs that
don't, and it allows those functions to be provided in the "official"
libjpeg-turbo binaries.
Those who are concerned about maintaining strict conformance with the libjpeg
v6b or v7 API can pass an argument of `-DWITH_MEM_SRCDST=0` to `cmake` prior to
building libjpeg-turbo. This will restore the pre-1.3 behavior, in which
`jpeg_mem_src()` and `jpeg_mem_dest()` are only included when emulating the
libjpeg v8 API/ABI.
On Un*x systems, including the in-memory source/destination managers changes
the dynamic library version from 62.2.0 to 62.3.0 if using libjpeg v6b API/ABI
emulation and from 7.2.0 to 7.3.0 if using libjpeg v7 API/ABI emulation.
Note that, on most Un*x systems, the dynamic linker will not look for a
function in a library until that function is actually used. Thus, if a program
is built against libjpeg-turbo 1.3+ and uses `jpeg_mem_src()` or
`jpeg_mem_dest()`, that program will not fail if run against an older version
of libjpeg-turbo or against libjpeg v7- until the program actually tries to
call `jpeg_mem_src()` or `jpeg_mem_dest()`. Such is not the case on Windows.
If a program is built against the libjpeg-turbo 1.3+ DLL and uses
`jpeg_mem_src()` or `jpeg_mem_dest()`, then it must use the libjpeg-turbo 1.3+
DLL at run time.
Both cjpeg and djpeg have been extended to allow testing the in-memory
source/destination manager functions. See their respective man pages for more
details.
Mathematical Compatibility
==========================
For the most part, libjpeg-turbo should produce identical output to libjpeg
v6b. The one exception to this is when using the floating point DCT/IDCT, in
which case the outputs of libjpeg v6b and libjpeg-turbo can differ for the
following reasons:
- The SSE/SSE2 floating point DCT implementation in libjpeg-turbo is ever so
slightly more accurate than the implementation in libjpeg v6b, but not by
any amount perceptible to human vision (generally in the range of 0.01 to
0.08 dB gain in PNSR.)
- When not using the SIMD extensions, libjpeg-turbo uses the more accurate
(and slightly faster) floating point IDCT algorithm introduced in libjpeg
v8a as opposed to the algorithm used in libjpeg v6b. It should be noted,
however, that this algorithm basically brings the accuracy of the floating
point IDCT in line with the accuracy of the accurate integer IDCT. The
floating point DCT/IDCT algorithms are mainly a legacy feature, and they do
not produce significantly more accuracy than the accurate integer algorithms
(to put numbers on this, the typical difference in PNSR between the two
algorithms is less than 0.10 dB, whereas changing the quality level by 1 in
the upper range of the quality scale is typically more like a 1.0 dB
difference.)
- If the floating point algorithms in libjpeg-turbo are not implemented using
SIMD instructions on a particular platform, then the accuracy of the
floating point DCT/IDCT can depend on the compiler settings.
While libjpeg-turbo does emulate the libjpeg v8 API/ABI, under the hood it is
still using the same algorithms as libjpeg v6b, so there are several specific
cases in which libjpeg-turbo cannot be expected to produce the same output as
libjpeg v8:
- When decompressing using scaling factors of 1/2 and 1/4, because libjpeg v8
implements those scaling algorithms differently than libjpeg v6b does, and
libjpeg-turbo's SIMD extensions are based on the libjpeg v6b behavior.
- When using chrominance subsampling, because libjpeg v8 implements this
with its DCT/IDCT scaling algorithms rather than with a separate
downsampling/upsampling algorithm. In our testing, the subsampled/upsampled
output of libjpeg v8 is less accurate than that of libjpeg v6b for this
reason.
- When decompressing using a scaling factor > 1 and merged (AKA "non-fancy" or
"non-smooth") chrominance upsampling, because libjpeg v8 does not support
merged upsampling with scaling factors > 1.
Performance Pitfalls
====================
Restart Markers
---------------
The optimized Huffman decoder in libjpeg-turbo does not handle restart markers
in a way that makes the rest of the libjpeg infrastructure happy, so it is
necessary to use the slow Huffman decoder when decompressing a JPEG image that
has restart markers. This can cause the decompression performance to drop by
as much as 20%, but the performance will still be much greater than that of
libjpeg. Many consumer packages, such as Photoshop, use restart markers when
generating JPEG images, so images generated by those programs will experience
this issue.
Fast Integer Forward DCT at High Quality Levels
-----------------------------------------------
The algorithm used by the SIMD-accelerated quantization function cannot produce
correct results whenever the fast integer forward DCT is used along with a JPEG
quality of 98-100. Thus, libjpeg-turbo must use the non-SIMD quantization
function in those cases. This causes performance to drop by as much as 40%.
It is therefore strongly advised that you use the accurate integer forward DCT
whenever encoding images with a JPEG quality of 98 or higher.
Memory Debugger Pitfalls
========================
Valgrind and Memory Sanitizer (MSan) can generate false positives
(specifically, incorrect reports of uninitialized memory accesses) when used
with libjpeg-turbo's SIMD extensions. It is generally recommended that the
SIMD extensions be disabled, either by passing an argument of `-DWITH_SIMD=0`
to `cmake` when configuring the build or by setting the environment variable
`JSIMD_FORCENONE` to `1` at run time, when testing libjpeg-turbo with Valgrind,
MSan, or other memory debuggers.

View File

@@ -0,0 +1,39 @@
/*
* The copyright in this software is being made available under the 2-clauses
* BSD License, included below. This software may be subject to other third
* party and contributor rights, including patent rights, and no such rights
* are granted under this license.
*
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
* Copyright (c) 2002-2014, Professor Benoit Macq
* Copyright (c) 2003-2014, Antonin Descampe
* Copyright (c) 2003-2009, Francois-Olivier Devaux
* Copyright (c) 2005, Herve Drolon, FreeImage Team
* Copyright (c) 2002-2003, Yannick Verschueren
* Copyright (c) 2001-2003, David Janssens
* Copyright (c) 2011-2012, Centre National d'Etudes Spatiales (CNES), France
* Copyright (c) 2012, CS Systemes d'Information, France
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

View File

@@ -0,0 +1,83 @@
# OPENJPEG Library and Applications
## What is OpenJPEG ?
OpenJPEG is an open-source JPEG 2000 codec written in C language. It has been developed in order to promote the use of [JPEG 2000](http://www.jpeg.org/jpeg2000), a still-image compression standard from the Joint Photographic Experts Group ([JPEG](http://www.jpeg.org)). Since April 2015, it is officially recognized by ISO/IEC and ITU-T as a [JPEG 2000 Reference Software](http://www.itu.int/rec/T-REC-T.804-201504-I!Amd2).
## Who can use the code ?
[![badge-license]][link-license]
Anyone. As the OpenJPEG code is released under the [BSD 2-clause "Simplified" License][link-license], anyone can use or modify the code, even for commercial applications. The only restriction is to retain the copyright in the sources or in the binaries documentation. Of course, if you modified the code in a way that might be of interest for other users, you are encouraged to share it (through a [github pull request](https://github.com/uclouvain/openjpeg/pulls) or by filling an [issue](https://github.com/uclouvain/openjpeg/issues)) but this is not a requirement.
## How to install and use OpenJPEG ?
API Documentation needs a major refactoring. Meanwhile, you can check [installation](https://github.com/uclouvain/openjpeg/wiki/Installation) instructions and [codec documentation](https://github.com/uclouvain/openjpeg/wiki/DocJ2KCodec).
## Current Status
[![badge-build]][link-build]
[![badge-msvc-build]][link-msvc-build]
[![badge-coverity]][link-coverity]
## Who are the developers ?
The library is developed and maintained by the Image and Signal Processing Group ([ISPGroup](http://sites.uclouvain.be/ispgroup/)), in the Université catholique de Louvain ([UCL](http://www.uclouvain.be/en-index.html), with the support of the [CNES](https://cnes.fr/), the [CS](http://www.c-s.fr/) company and the [intoPIX](http://www.intopix.com) company. The JPWL module has been developed by the Digital Signal Processing Lab ([DSPLab](http://dsplab.diei.unipg.it/)) of the University of Perugia, Italy ([UNIPG](http://www.unipg.it/)).
## Details on folders hierarchy
* src
* lib
* openjp2: contains the sources of the openjp2 library (Part 1 & 2)
* openjpwl: contains the additional sources if you want to build a JPWL-flavoured library.
* openjpip: complete client-server architecture for remote browsing of jpeg 2000 images.
* openjp3d: JP3D implementation
* openmj2: MJ2 implementation
* bin: contains all applications that use the openjpeg library
* common: common files to all applications
* jp2: a basic codec
* mj2: motion jpeg 2000 executables
* jpip: OpenJPIP applications (server and dec server)
* java: a Java client viewer for JPIP
* jp3d: JP3D applications
* tcltk: a test tool for JP3D
* wx
* OPJViewer: gui for displaying j2k files (based on wxWidget)
* wrapping
* java: java jni to use openjpeg in a java program
* thirdparty: thirdparty libraries used by some applications. These libraries will be built only if there are not found on the system. Note that libopenjpeg itself does not have any dependency.
* doc: doxygen documentation setup file and man pages
* tests: configuration files and utilities for the openjpeg test suite. All test images are located in [openjpeg-data](https://github.com/uclouvain/openjpeg-data) repository.
* cmake: cmake related files
* scripts: scripts for developers
See [LICENSE][link-license] for license and copyright information.
See [INSTALL](https://github.com/uclouvain/openjpeg/blob/master/INSTALL.md) for installation procedures.
See [NEWS](https://github.com/uclouvain/openjpeg/blob/master/NEWS.md) for user visible changes in successive releases.
## API/ABI
An API/ABI timeline is automatically updated [here][link-api-timeline].
OpenJPEG strives to provide a stable API/ABI for your applications. As such it
only exposes a limited subset of its functions. It uses a mechanism of
exporting/hiding functions. If you are unsure which functions you can use in
your applications, you should compile OpenJPEG using something similar to gcc:
`-fvisibility=hidden` compilation flag.
See also: http://gcc.gnu.org/wiki/Visibility
On windows, MSVC directly supports export/hiding function and as such the only
API available is the one supported by OpenJPEG.
[comment-license]: https://img.shields.io/github/license/uclouvain/openjpeg.svg "https://img.shields.io/badge/license-BSD--2--Clause-blue.svg"
[badge-license]: https://img.shields.io/badge/license-BSD--2--Clause-blue.svg "BSD 2-clause \"Simplified\" License"
[link-license]: https://github.com/uclouvain/openjpeg/blob/master/LICENSE "BSD 2-clause \"Simplified\" License"
[badge-build]: https://travis-ci.org/uclouvain/openjpeg.svg?branch=master "Build Status"
[link-build]: https://travis-ci.org/uclouvain/openjpeg "Build Status"
[badge-msvc-build]: https://ci.appveyor.com/api/projects/status/github/uclouvain/openjpeg?branch=master&svg=true "Windows Build Status"
[link-msvc-build]: https://ci.appveyor.com/project/detonin/openjpeg/branch/master "Windows Build Status"
[badge-coverity]: https://scan.coverity.com/projects/6383/badge.svg "Coverity Scan Build Status"
[link-coverity]: https://scan.coverity.com/projects/uclouvain-openjpeg "Coverity Scan Build Status"
[link-api-timeline]: http://www.openjpeg.org/abi-check/timeline/openjpeg "OpenJPEG API/ABI timeline"

View File

@@ -0,0 +1,134 @@
COPYRIGHT NOTICE, DISCLAIMER, and LICENSE
=========================================
PNG Reference Library License version 2
---------------------------------------
* Copyright (c) 1995-2019 The PNG Reference Library Authors.
* Copyright (c) 2018-2019 Cosmin Truta.
* Copyright (c) 2000-2002, 2004, 2006-2018 Glenn Randers-Pehrson.
* Copyright (c) 1996-1997 Andreas Dilger.
* Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.
The software is supplied "as is", without warranty of any kind,
express or implied, including, without limitation, the warranties
of merchantability, fitness for a particular purpose, title, and
non-infringement. In no event shall the Copyright owners, or
anyone distributing the software, be liable for any damages or
other liability, whether in contract, tort or otherwise, arising
from, out of, or in connection with the software, or the use or
other dealings in the software, even if advised of the possibility
of such damage.
Permission is hereby granted to use, copy, modify, and distribute
this software, or portions hereof, for any purpose, without fee,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you
must not claim that you wrote the original software. If you
use this software in a product, an acknowledgment in the product
documentation would be appreciated, but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This Copyright notice may not be removed or altered from any
source or altered source distribution.
PNG Reference Library License version 1 (for libpng 0.5 through 1.6.35)
-----------------------------------------------------------------------
libpng versions 1.0.7, July 1, 2000, through 1.6.35, July 15, 2018 are
Copyright (c) 2000-2002, 2004, 2006-2018 Glenn Randers-Pehrson, are
derived from libpng-1.0.6, and are distributed according to the same
disclaimer and license as libpng-1.0.6 with the following individuals
added to the list of Contributing Authors:
Simon-Pierre Cadieux
Eric S. Raymond
Mans Rullgard
Cosmin Truta
Gilles Vollant
James Yu
Mandar Sahastrabuddhe
Google Inc.
Vadim Barkov
and with the following additions to the disclaimer:
There is no warranty against interference with your enjoyment of
the library or against infringement. There is no warranty that our
efforts or the library will fulfill any of your particular purposes
or needs. This library is provided with all faults, and the entire
risk of satisfactory quality, performance, accuracy, and effort is
with the user.
Some files in the "contrib" directory and some configure-generated
files that are distributed with libpng have other copyright owners, and
are released under other open source licenses.
libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are
Copyright (c) 1998-2000 Glenn Randers-Pehrson, are derived from
libpng-0.96, and are distributed according to the same disclaimer and
license as libpng-0.96, with the following individuals added to the
list of Contributing Authors:
Tom Lane
Glenn Randers-Pehrson
Willem van Schaik
libpng versions 0.89, June 1996, through 0.96, May 1997, are
Copyright (c) 1996-1997 Andreas Dilger, are derived from libpng-0.88,
and are distributed according to the same disclaimer and license as
libpng-0.88, with the following individuals added to the list of
Contributing Authors:
John Bowler
Kevin Bracey
Sam Bushell
Magnus Holmgren
Greg Roelofs
Tom Tanner
Some files in the "scripts" directory have other copyright owners,
but are released under this license.
libpng versions 0.5, May 1995, through 0.88, January 1996, are
Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.
For the purposes of this copyright and license, "Contributing Authors"
is defined as the following set of individuals:
Andreas Dilger
Dave Martindale
Guy Eric Schalnat
Paul Schmidt
Tim Wegner
The PNG Reference Library is supplied "AS IS". The Contributing
Authors and Group 42, Inc. disclaim all warranties, expressed or
implied, including, without limitation, the warranties of
merchantability and of fitness for any purpose. The Contributing
Authors and Group 42, Inc. assume no liability for direct, indirect,
incidental, special, exemplary, or consequential damages, which may
result from the use of the PNG Reference Library, even if advised of
the possibility of such damage.
Permission is hereby granted to use, copy, modify, and distribute this
source code, or portions hereof, for any purpose, without fee, subject
to the following restrictions:
1. The origin of this source code must not be misrepresented.
2. Altered versions must be plainly marked as such and must not
be misrepresented as being the original source.
3. This Copyright notice may not be removed or altered from any
source or altered source distribution.
The Contributing Authors and Group 42, Inc. specifically permit,
without fee, and encourage the use of this source code as a component
to supporting the PNG file format in commercial products. If you use
this source code in a product, acknowledgment is not required but would
be appreciated.

View File

@@ -0,0 +1,183 @@
README for libpng version 1.6.37 - April 14, 2019
=================================================
See the note about version numbers near the top of png.h.
See INSTALL for instructions on how to install libpng.
Libpng comes in several distribution formats. Get libpng-*.tar.gz or
libpng-*.tar.xz or if you want UNIX-style line endings in the text
files, or lpng*.7z or lpng*.zip if you want DOS-style line endings.
Version 0.89 was the first official release of libpng. Don't let the
fact that it's the first release fool you. The libpng library has been
in extensive use and testing since mid-1995. By late 1997 it had
finally gotten to the stage where there hadn't been significant
changes to the API in some time, and people have a bad feeling about
libraries with versions < 1.0. Version 1.0.0 was released in
March 1998.
****
Note that some of the changes to the png_info structure render this
version of the library binary incompatible with libpng-0.89 or
earlier versions if you are using a shared library. The type of the
"filler" parameter for png_set_filler() has changed from png_byte to
png_uint_32, which will affect shared-library applications that use
this function.
To avoid problems with changes to the internals of the png info_struct,
new APIs have been made available in 0.95 to avoid direct application
access to info_ptr. These functions are the png_set_<chunk> and
png_get_<chunk> functions. These functions should be used when
accessing/storing the info_struct data, rather than manipulating it
directly, to avoid such problems in the future.
It is important to note that the APIs did not make current programs
that access the info struct directly incompatible with the new
library, through libpng-1.2.x. In libpng-1.4.x, which was meant to
be a transitional release, members of the png_struct and the
info_struct can still be accessed, but the compiler will issue a
warning about deprecated usage. Since libpng-1.5.0, direct access
to these structs is not allowed, and the definitions of the structs
reside in private pngstruct.h and pnginfo.h header files that are not
accessible to applications. It is strongly suggested that new
programs use the new APIs (as shown in example.c and pngtest.c), and
older programs be converted to the new format, to facilitate upgrades
in the future.
****
Additions since 0.90 include the ability to compile libpng as a
Windows DLL, and new APIs for accessing data in the info struct.
Experimental functions include the ability to set weighting and cost
factors for row filter selection, direct reads of integers from buffers
on big-endian processors that support misaligned data access, faster
methods of doing alpha composition, and more accurate 16->8 bit color
conversion.
The additions since 0.89 include the ability to read from a PNG stream
which has had some (or all) of the signature bytes read by the calling
application. This also allows the reading of embedded PNG streams that
do not have the PNG file signature. As well, it is now possible to set
the library action on the detection of chunk CRC errors. It is possible
to set different actions based on whether the CRC error occurred in a
critical or an ancillary chunk.
For a detailed description on using libpng, read libpng-manual.txt.
For examples of libpng in a program, see example.c and pngtest.c. For
usage information and restrictions (what little they are) on libpng,
see png.h. For a description on using zlib (the compression library
used by libpng) and zlib's restrictions, see zlib.h
I have included a general makefile, as well as several machine and
compiler specific ones, but you may have to modify one for your own
needs.
You should use zlib 1.0.4 or later to run this, but it MAY work with
versions as old as zlib 0.95. Even so, there are bugs in older zlib
versions which can cause the output of invalid compression streams for
some images.
You should also note that zlib is a compression library that is useful
for more things than just PNG files. You can use zlib as a drop-in
replacement for fread() and fwrite(), if you are so inclined.
zlib should be available at the same place that libpng is, or at
https://zlib.net.
You may also want a copy of the PNG specification. It is available
as an RFC, a W3C Recommendation, and an ISO/IEC Standard. You can find
these at http://www.libpng.org/pub/png/pngdocs.html .
This code is currently being archived at libpng.sourceforge.io in the
[DOWNLOAD] area, and at http://libpng.download/src .
This release, based in a large way on Glenn's, Guy's and Andreas'
earlier work, was created and will be supported by myself and the PNG
development group.
Send comments/corrections/commendations to png-mng-implement at
lists.sourceforge.net (subscription required; visit
https://lists.sourceforge.net/lists/listinfo/png-mng-implement
to subscribe).
Send general questions about the PNG specification to png-mng-misc
at lists.sourceforge.net (subscription required; visit
https://lists.sourceforge.net/lists/listinfo/png-mng-misc to
subscribe).
Files in this distribution:
ANNOUNCE => Announcement of this version, with recent changes
AUTHORS => List of contributing authors
CHANGES => Description of changes between libpng versions
KNOWNBUG => List of known bugs and deficiencies
LICENSE => License to use and redistribute libpng
README => This file
TODO => Things not implemented in the current library
TRADEMARK => Trademark information
example.c => Example code for using libpng functions
libpng.3 => manual page for libpng (includes libpng-manual.txt)
libpng-manual.txt => Description of libpng and its functions
libpngpf.3 => manual page for libpng's private functions
png.5 => manual page for the PNG format
png.c => Basic interface functions common to library
png.h => Library function and interface declarations (public)
pngpriv.h => Library function and interface declarations (private)
pngconf.h => System specific library configuration (public)
pngstruct.h => png_struct declaration (private)
pnginfo.h => png_info struct declaration (private)
pngdebug.h => debugging macros (private)
pngerror.c => Error/warning message I/O functions
pngget.c => Functions for retrieving info from struct
pngmem.c => Memory handling functions
pngbar.png => PNG logo, 88x31
pngnow.png => PNG logo, 98x31
pngpread.c => Progressive reading functions
pngread.c => Read data/helper high-level functions
pngrio.c => Lowest-level data read I/O functions
pngrtran.c => Read data transformation functions
pngrutil.c => Read data utility functions
pngset.c => Functions for storing data into the info_struct
pngtest.c => Library test program
pngtest.png => Library test sample image
pngtrans.c => Common data transformation functions
pngwio.c => Lowest-level write I/O functions
pngwrite.c => High-level write functions
pngwtran.c => Write data transformations
pngwutil.c => Write utility functions
arm => Contains optimized code for the ARM platform
powerpc => Contains optimized code for the PowerPC platform
contrib => Contributions
arm-neon => Optimized code for ARM-NEON platform
powerpc-vsx => Optimized code for POWERPC-VSX platform
examples => Example programs
gregbook => source code for PNG reading and writing, from
Greg Roelofs' "PNG: The Definitive Guide",
O'Reilly, 1999
libtests => Test programs
mips-msa => Optimized code for MIPS-MSA platform
pngminim => Minimal decoder, encoder, and progressive decoder
programs demonstrating use of pngusr.dfa
pngminus => Simple pnm2png and png2pnm programs
pngsuite => Test images
testpngs
tools => Various tools
visupng => Contains a MSVC workspace for VisualPng
intel => Optimized code for INTEL-SSE2 platform
mips => Optimized code for MIPS platform
projects => Contains project files and workspaces for
building a DLL
owatcom => Contains a WATCOM project for building libpng
visualc71 => Contains a Microsoft Visual C++ (MSVC)
workspace for building libpng and zlib
vstudio => Contains a Microsoft Visual C++ (MSVC)
workspace for building libpng and zlib
scripts => Directory containing scripts for building libpng:
(see scripts/README.txt for the list of scripts)
Good luck, and happy coding!
* Cosmin Truta (current maintainer, since 2018)
* Glenn Randers-Pehrson (former maintainer, 1998-2018)
* Andreas Eric Dilger (former maintainer, 1996-1997)
* Guy Eric Schalnat (original author and former maintainer, 1995-1996)
(formerly of Group 42, Inc.)

View File

@@ -0,0 +1,21 @@
Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.
Permission to use, copy, modify, distribute, and sell this software and
its documentation for any purpose is hereby granted without fee, provided
that (i) the above copyright notices and this permission notice appear in
all copies of the software and related documentation, and (ii) the names of
Sam Leffler and Silicon Graphics may not be used in any advertising or
publicity relating to the software without the specific, prior written
permission of Sam Leffler and Silicon Graphics.
THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

View File

@@ -0,0 +1,25 @@
Copyright (c) 2008-2015 The Khronos Group Inc.
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and/or associated documentation files (the
"Materials"), to deal in the Materials without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Materials, and to
permit persons to whom the Materials are furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Materials.
MODIFICATIONS TO THIS FILE MAY MEAN IT NO LONGER ACCURATELY REFLECTS
KHRONOS STANDARDS. THE UNMODIFIED, NORMATIVE VERSIONS OF KHRONOS
SPECIFICATIONS AND HEADER INFORMATION ARE LOCATED AT
https://www.khronos.org/registry/
THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
MATERIALS OR THE USE OR OTHER DEALINGS IN THE MATERIALS.

View File

@@ -0,0 +1,21 @@
Developers:
-----------
Florian Kainz <kainz@ilm.com>
Rod Bogart <rgb@ilm.com>
Drew Hess <dhess@ilm.com>
Bill Anderson <wja@ilm.com>
Wojciech Jarosz <wjarosz@ucsd.edu>
Contributors:
-------------
Rito Trevino
Josh Pines
Christian Rouet
Win32 build system:
-------------------
Nick Porcino <NPorcino@lucasarts.com>
Kimball Thurston

View File

@@ -0,0 +1,49 @@
Developers:
-----------
Florian Kainz <kainz@ilm.com>
Rod Bogart <rgb@ilm.com>
Drew Hess <dhess@ilm.com>
Paul Schneider <paultschneider@mac.com>
Bill Anderson <wja@ilm.com>
Wojciech Jarosz <wjarosz@ucsd.edu>
Andrew Kunz <akunz@ilm.com>
Piotr Stanczyk <pstanczyk@ilm.com>
Peter Hillman <peterh@weta.co.nz>
Nick Porcino <nick.porcino@gmail.com>
Kimball Thurston
Contributors:
-------------
Simon Green <SGreen@nvidia.com>
Rito Trevino <etrevino@ilm.com>
Josh Pines
Christian Rouet
Rodrigo Damazio <rdamazio@lsi.usp.br>
Greg Ward <gward@lmi.net>
Joseph Goldstone <joseph@lp.com>
Loren Carpenter, Pixar Animation Studios
Nicholas Yue <yue.nicholas@gmail.com>
Yunfeng Bai (ILM)
Pascal Jette (Autodesk)
Karl Rasche, DreamWorks Animation <Karl.Rasche@dreamworks.com>
Win32 build system:
-------------------
Nick Porcino <NPorcino@lucasarts.com>
Kimball Thurston
Win32 port contributors:
------------------------
Dustin Graves <dgraves@computer.org>
Jukka Liimatta <jukka.liimatta@twilight3d.com>
Baumann Konstantin <Konstantin.Baumann@hpi.uni-potsdam.de>
Daniel Koch <daniel@eyeonline.com>
E. Scott Larsen <larsene@cs.unc.edu>
stephan mantler <step@acm.org>
Andreas Kahler <AKahler@nxn-software.com>
Frank Jargstorff <fjargstorff@nvidia.com>
Lutz Latta

View File

@@ -0,0 +1,34 @@
Copyright (c) 2006, Industrial Light & Magic, a division of Lucasfilm
Entertainment Company Ltd. Portions contributed and copyright held by
others as indicated. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with
the distribution.
* Neither the name of Industrial Light & Magic nor the names of
any other contributors to this software may be used to endorse or
promote products derived from this software without specific prior
written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@@ -0,0 +1,32 @@
Copyright 2008 Google Inc. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Code generated by the Protocol Buffer compiler is owned by the owner
of the input file used when generating it. This code is not
standalone and requires a support library to be linked with it. This
support library is itself covered by the above license.

View File

@@ -0,0 +1,3 @@
Project: Protocol Buffers - Google's data interchange format
Source code: https://github.com/protocolbuffers/protobuf
Version: 3.19.1

View File

@@ -0,0 +1,16 @@
quirc -- QR-code recognition library
Copyright (C) 2010-2012 Daniel Beer <dlbeer@gmail.com>
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

View File

@@ -0,0 +1,118 @@
ZLIB DATA COMPRESSION LIBRARY
zlib 1.2.12 is a general purpose data compression library. All the code is
thread safe. The data format used by the zlib library is described by RFCs
(Request for Comments) 1950 to 1952 in the files
http://tools.ietf.org/html/rfc1950 (zlib format), rfc1951 (deflate format) and
rfc1952 (gzip format).
All functions of the compression library are documented in the file zlib.h
(volunteer to write man pages welcome, contact zlib@gzip.org). A usage example
of the library is given in the file test/example.c which also tests that
the library is working correctly. Another example is given in the file
test/minigzip.c. The compression library itself is composed of all source
files in the root directory.
To compile all files and run the test program, follow the instructions given at
the top of Makefile.in. In short "./configure; make test", and if that goes
well, "make install" should work for most flavors of Unix. For Windows, use
one of the special makefiles in win32/ or contrib/vstudio/ . For VMS, use
make_vms.com.
Questions about zlib should be sent to <zlib@gzip.org>, or to Gilles Vollant
<info@winimage.com> for the Windows DLL version. The zlib home page is
http://zlib.net/ . Before reporting a problem, please check this site to
verify that you have the latest version of zlib; otherwise get the latest
version and check whether the problem still exists or not.
PLEASE read the zlib FAQ http://zlib.net/zlib_faq.html before asking for help.
Mark Nelson <markn@ieee.org> wrote an article about zlib for the Jan. 1997
issue of Dr. Dobb's Journal; a copy of the article is available at
http://marknelson.us/1997/01/01/zlib-engine/ .
The changes made in version 1.2.12 are documented in the file ChangeLog.
Unsupported third party contributions are provided in directory contrib/ .
zlib is available in Java using the java.util.zip package, documented at
http://java.sun.com/developer/technicalArticles/Programming/compression/ .
A Perl interface to zlib written by Paul Marquess <pmqs@cpan.org> is available
at CPAN (Comprehensive Perl Archive Network) sites, including
http://search.cpan.org/~pmqs/IO-Compress-Zlib/ .
A Python interface to zlib written by A.M. Kuchling <amk@amk.ca> is
available in Python 1.5 and later versions, see
http://docs.python.org/library/zlib.html .
zlib is built into tcl: http://wiki.tcl.tk/4610 .
An experimental package to read and write files in .zip format, written on top
of zlib by Gilles Vollant <info@winimage.com>, is available in the
contrib/minizip directory of zlib.
Notes for some targets:
- For Windows DLL versions, please see win32/DLL_FAQ.txt
- For 64-bit Irix, deflate.c must be compiled without any optimization. With
-O, one libpng test fails. The test works in 32 bit mode (with the -n32
compiler flag). The compiler bug has been reported to SGI.
- zlib doesn't work with gcc 2.6.3 on a DEC 3000/300LX under OSF/1 2.1 it works
when compiled with cc.
- On Digital Unix 4.0D (formely OSF/1) on AlphaServer, the cc option -std1 is
necessary to get gzprintf working correctly. This is done by configure.
- zlib doesn't work on HP-UX 9.05 with some versions of /bin/cc. It works with
other compilers. Use "make test" to check your compiler.
- gzdopen is not supported on RISCOS or BEOS.
- For PalmOs, see http://palmzlib.sourceforge.net/
Acknowledgments:
The deflate format used by zlib was defined by Phil Katz. The deflate and
zlib specifications were written by L. Peter Deutsch. Thanks to all the
people who reported problems and suggested various improvements in zlib; they
are too numerous to cite here.
Copyright notice:
(C) 1995-2022 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
If you use the zlib library in a product, we would appreciate *not* receiving
lengthy legal documents to sign. The sources are provided for free but without
warranty of any kind. The library has been entirely written by Jean-loup
Gailly and Mark Adler; it does not include third-party code. We make all
contributions to and distributions of this project solely in our personal
capacity, and are not conveying any rights to any intellectual property of
any third parties.
If you redistribute modified sources, we would appreciate that you include in
the file ChangeLog history information documenting your changes. Please read
the FAQ for more information on the distribution of modified source versions.

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,48 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef __OPENCV_BUILD
#error this is a compatibility header which should not be used inside the OpenCV library
#endif
#include "opencv2/calib3d.hpp"

View File

@@ -0,0 +1,150 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CALIB3D_C_H
#define OPENCV_CALIB3D_C_H
#include "opencv2/core/types_c.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Calculates fundamental matrix given a set of corresponding points */
#define CV_FM_7POINT 1
#define CV_FM_8POINT 2
#define CV_LMEDS 4
#define CV_RANSAC 8
#define CV_FM_LMEDS_ONLY CV_LMEDS
#define CV_FM_RANSAC_ONLY CV_RANSAC
#define CV_FM_LMEDS CV_LMEDS
#define CV_FM_RANSAC CV_RANSAC
enum
{
CV_ITERATIVE = 0,
CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
CV_P3P = 2, // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
CV_DLS = 3 // Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP"
};
#define CV_CALIB_CB_ADAPTIVE_THRESH 1
#define CV_CALIB_CB_NORMALIZE_IMAGE 2
#define CV_CALIB_CB_FILTER_QUADS 4
#define CV_CALIB_CB_FAST_CHECK 8
#define CV_CALIB_USE_INTRINSIC_GUESS 1
#define CV_CALIB_FIX_ASPECT_RATIO 2
#define CV_CALIB_FIX_PRINCIPAL_POINT 4
#define CV_CALIB_ZERO_TANGENT_DIST 8
#define CV_CALIB_FIX_FOCAL_LENGTH 16
#define CV_CALIB_FIX_K1 32
#define CV_CALIB_FIX_K2 64
#define CV_CALIB_FIX_K3 128
#define CV_CALIB_FIX_K4 2048
#define CV_CALIB_FIX_K5 4096
#define CV_CALIB_FIX_K6 8192
#define CV_CALIB_RATIONAL_MODEL 16384
#define CV_CALIB_THIN_PRISM_MODEL 32768
#define CV_CALIB_FIX_S1_S2_S3_S4 65536
#define CV_CALIB_TILTED_MODEL 262144
#define CV_CALIB_FIX_TAUX_TAUY 524288
#define CV_CALIB_FIX_TANGENT_DIST 2097152
#define CV_CALIB_NINTRINSIC 18
#define CV_CALIB_FIX_INTRINSIC 256
#define CV_CALIB_SAME_FOCAL_LENGTH 512
#define CV_CALIB_ZERO_DISPARITY 1024
/* stereo correspondence parameters and functions */
#define CV_STEREO_BM_NORMALIZED_RESPONSE 0
#define CV_STEREO_BM_XSOBEL 1
#ifdef __cplusplus
} // extern "C"
//////////////////////////////////////////////////////////////////////////////////////////
class CV_EXPORTS CvLevMarq
{
public:
CvLevMarq();
CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria=
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
bool completeSymmFlag=false );
~CvLevMarq();
void init( int nparams, int nerrs, CvTermCriteria criteria=
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON),
bool completeSymmFlag=false );
bool update( const CvMat*& param, CvMat*& J, CvMat*& err );
bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm );
void clear();
void step();
enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 };
cv::Ptr<CvMat> mask;
cv::Ptr<CvMat> prevParam;
cv::Ptr<CvMat> param;
cv::Ptr<CvMat> J;
cv::Ptr<CvMat> err;
cv::Ptr<CvMat> JtJ;
cv::Ptr<CvMat> JtJN;
cv::Ptr<CvMat> JtErr;
cv::Ptr<CvMat> JtJV;
cv::Ptr<CvMat> JtJW;
double prevErrNorm, errNorm;
int lambdaLg10;
CvTermCriteria criteria;
int state;
int iters;
bool completeSymmFlag;
int solveMethod;
};
#endif
#endif /* OPENCV_CALIB3D_C_H */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,678 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CORE_AFFINE3_HPP
#define OPENCV_CORE_AFFINE3_HPP
#ifdef __cplusplus
#include <opencv2/core.hpp>
namespace cv
{
//! @addtogroup core
//! @{
/** @brief Affine transform
*
* It represents a 4x4 homogeneous transformation matrix \f$T\f$
*
* \f[T =
* \begin{bmatrix}
* R & t\\
* 0 & 1\\
* \end{bmatrix}
* \f]
*
* where \f$R\f$ is a 3x3 rotation matrix and \f$t\f$ is a 3x1 translation vector.
*
* You can specify \f$R\f$ either by a 3x3 rotation matrix or by a 3x1 rotation vector,
* which is converted to a 3x3 rotation matrix by the Rodrigues formula.
*
* To construct a matrix \f$T\f$ representing first rotation around the axis \f$r\f$ with rotation
* angle \f$|r|\f$ in radian (right hand rule) and then translation by the vector \f$t\f$, you can use
*
* @code
* cv::Vec3f r, t;
* cv::Affine3f T(r, t);
* @endcode
*
* If you already have the rotation matrix \f$R\f$, then you can use
*
* @code
* cv::Matx33f R;
* cv::Affine3f T(R, t);
* @endcode
*
* To extract the rotation matrix \f$R\f$ from \f$T\f$, use
*
* @code
* cv::Matx33f R = T.rotation();
* @endcode
*
* To extract the translation vector \f$t\f$ from \f$T\f$, use
*
* @code
* cv::Vec3f t = T.translation();
* @endcode
*
* To extract the rotation vector \f$r\f$ from \f$T\f$, use
*
* @code
* cv::Vec3f r = T.rvec();
* @endcode
*
* Note that since the mapping from rotation vectors to rotation matrices
* is many to one. The returned rotation vector is not necessarily the one
* you used before to set the matrix.
*
* If you have two transformations \f$T = T_1 * T_2\f$, use
*
* @code
* cv::Affine3f T, T1, T2;
* T = T2.concatenate(T1);
* @endcode
*
* To get the inverse transform of \f$T\f$, use
*
* @code
* cv::Affine3f T, T_inv;
* T_inv = T.inv();
* @endcode
*
*/
template<typename T>
class Affine3
{
public:
typedef T float_type;
typedef Matx<float_type, 3, 3> Mat3;
typedef Matx<float_type, 4, 4> Mat4;
typedef Vec<float_type, 3> Vec3;
//! Default constructor. It represents a 4x4 identity matrix.
Affine3();
//! Augmented affine matrix
Affine3(const Mat4& affine);
/**
* The resulting 4x4 matrix is
*
* \f[
* \begin{bmatrix}
* R & t\\
* 0 & 1\\
* \end{bmatrix}
* \f]
*
* @param R 3x3 rotation matrix.
* @param t 3x1 translation vector.
*/
Affine3(const Mat3& R, const Vec3& t = Vec3::all(0));
/**
* Rodrigues vector.
*
* The last row of the current matrix is set to [0,0,0,1].
*
* @param rvec 3x1 rotation vector. Its direction indicates the rotation axis and its length
* indicates the rotation angle in radian (using right hand rule).
* @param t 3x1 translation vector.
*/
Affine3(const Vec3& rvec, const Vec3& t = Vec3::all(0));
/**
* Combines all constructors above. Supports 4x4, 3x4, 3x3, 1x3, 3x1 sizes of data matrix.
*
* The last row of the current matrix is set to [0,0,0,1] when data is not 4x4.
*
* @param data 1-channel matrix.
* when it is 4x4, it is copied to the current matrix and t is not used.
* When it is 3x4, it is copied to the upper part 3x4 of the current matrix and t is not used.
* When it is 3x3, it is copied to the upper left 3x3 part of the current matrix.
* When it is 3x1 or 1x3, it is treated as a rotation vector and the Rodrigues formula is used
* to compute a 3x3 rotation matrix.
* @param t 3x1 translation vector. It is used only when data is neither 4x4 nor 3x4.
*/
explicit Affine3(const Mat& data, const Vec3& t = Vec3::all(0));
//! From 16-element array
explicit Affine3(const float_type* vals);
//! Create an 4x4 identity transform
static Affine3 Identity();
/**
* Rotation matrix.
*
* Copy the rotation matrix to the upper left 3x3 part of the current matrix.
* The remaining elements of the current matrix are not changed.
*
* @param R 3x3 rotation matrix.
*
*/
void rotation(const Mat3& R);
/**
* Rodrigues vector.
*
* It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
*
* @param rvec 3x1 rotation vector. The direction indicates the rotation axis and
* its length indicates the rotation angle in radian (using the right thumb convention).
*/
void rotation(const Vec3& rvec);
/**
* Combines rotation methods above. Supports 3x3, 1x3, 3x1 sizes of data matrix.
*
* It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
*
* @param data 1-channel matrix.
* When it is a 3x3 matrix, it sets the upper left 3x3 part of the current matrix.
* When it is a 1x3 or 3x1 matrix, it is used as a rotation vector. The Rodrigues formula
* is used to compute the rotation matrix and sets the upper left 3x3 part of the current matrix.
*/
void rotation(const Mat& data);
/**
* Copy the 3x3 matrix L to the upper left part of the current matrix
*
* It sets the upper left 3x3 part of the matrix. The remaining part is unaffected.
*
* @param L 3x3 matrix.
*/
void linear(const Mat3& L);
/**
* Copy t to the first three elements of the last column of the current matrix
*
* It sets the upper right 3x1 part of the matrix. The remaining part is unaffected.
*
* @param t 3x1 translation vector.
*/
void translation(const Vec3& t);
//! @return the upper left 3x3 part
Mat3 rotation() const;
//! @return the upper left 3x3 part
Mat3 linear() const;
//! @return the upper right 3x1 part
Vec3 translation() const;
//! Rodrigues vector.
//! @return a vector representing the upper left 3x3 rotation matrix of the current matrix.
//! @warning Since the mapping between rotation vectors and rotation matrices is many to one,
//! this function returns only one rotation vector that represents the current rotation matrix,
//! which is not necessarily the same one set by `rotation(const Vec3& rvec)`.
Vec3 rvec() const;
//! @return the inverse of the current matrix.
Affine3 inv(int method = cv::DECOMP_SVD) const;
//! a.rotate(R) is equivalent to Affine(R, 0) * a;
Affine3 rotate(const Mat3& R) const;
//! a.rotate(rvec) is equivalent to Affine(rvec, 0) * a;
Affine3 rotate(const Vec3& rvec) const;
//! a.translate(t) is equivalent to Affine(E, t) * a, where E is an identity matrix
Affine3 translate(const Vec3& t) const;
//! a.concatenate(affine) is equivalent to affine * a;
Affine3 concatenate(const Affine3& affine) const;
template <typename Y> operator Affine3<Y>() const;
template <typename Y> Affine3<Y> cast() const;
Mat4 matrix;
#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H
Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine);
Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine);
operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const;
operator Eigen::Transform<T, 3, Eigen::Affine>() const;
#endif
};
template<typename T> static
Affine3<T> operator*(const Affine3<T>& affine1, const Affine3<T>& affine2);
//! V is a 3-element vector with member fields x, y and z
template<typename T, typename V> static
V operator*(const Affine3<T>& affine, const V& vector);
typedef Affine3<float> Affine3f;
typedef Affine3<double> Affine3d;
static Vec3f operator*(const Affine3f& affine, const Vec3f& vector);
static Vec3d operator*(const Affine3d& affine, const Vec3d& vector);
template<typename _Tp> class DataType< Affine3<_Tp> >
{
public:
typedef Affine3<_Tp> value_type;
typedef Affine3<typename DataType<_Tp>::work_type> work_type;
typedef _Tp channel_type;
enum { generic_type = 0,
channels = 16,
fmt = traits::SafeFmt<channel_type>::fmt + ((channels - 1) << 8)
#ifdef OPENCV_TRAITS_ENABLE_DEPRECATED
,depth = DataType<channel_type>::depth
,type = CV_MAKETYPE(depth, channels)
#endif
};
typedef Vec<channel_type, channels> vec_type;
};
namespace traits {
template<typename _Tp>
struct Depth< Affine3<_Tp> > { enum { value = Depth<_Tp>::value }; };
template<typename _Tp>
struct Type< Affine3<_Tp> > { enum { value = CV_MAKETYPE(Depth<_Tp>::value, 16) }; };
} // namespace
//! @} core
}
//! @cond IGNORED
///////////////////////////////////////////////////////////////////////////////////
// Implementation
template<typename T> inline
cv::Affine3<T>::Affine3()
: matrix(Mat4::eye())
{}
template<typename T> inline
cv::Affine3<T>::Affine3(const Mat4& affine)
: matrix(affine)
{}
template<typename T> inline
cv::Affine3<T>::Affine3(const Mat3& R, const Vec3& t)
{
rotation(R);
translation(t);
matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
matrix.val[15] = 1;
}
template<typename T> inline
cv::Affine3<T>::Affine3(const Vec3& _rvec, const Vec3& t)
{
rotation(_rvec);
translation(t);
matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
matrix.val[15] = 1;
}
template<typename T> inline
cv::Affine3<T>::Affine3(const cv::Mat& data, const Vec3& t)
{
CV_Assert(data.type() == cv::traits::Type<T>::value);
CV_Assert(data.channels() == 1);
if (data.cols == 4 && data.rows == 4)
{
data.copyTo(matrix);
return;
}
else if (data.cols == 4 && data.rows == 3)
{
rotation(data(Rect(0, 0, 3, 3)));
translation(data(Rect(3, 0, 1, 3)));
}
else
{
rotation(data);
translation(t);
}
matrix.val[12] = matrix.val[13] = matrix.val[14] = 0;
matrix.val[15] = 1;
}
template<typename T> inline
cv::Affine3<T>::Affine3(const float_type* vals) : matrix(vals)
{}
template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::Identity()
{
return Affine3<T>(cv::Affine3<T>::Mat4::eye());
}
template<typename T> inline
void cv::Affine3<T>::rotation(const Mat3& R)
{
linear(R);
}
template<typename T> inline
void cv::Affine3<T>::rotation(const Vec3& _rvec)
{
double theta = norm(_rvec);
if (theta < DBL_EPSILON)
rotation(Mat3::eye());
else
{
double c = std::cos(theta);
double s = std::sin(theta);
double c1 = 1. - c;
double itheta = (theta != 0) ? 1./theta : 0.;
Point3_<T> r = _rvec*itheta;
Mat3 rrt( r.x*r.x, r.x*r.y, r.x*r.z, r.x*r.y, r.y*r.y, r.y*r.z, r.x*r.z, r.y*r.z, r.z*r.z );
Mat3 r_x( 0, -r.z, r.y, r.z, 0, -r.x, -r.y, r.x, 0 );
// R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x]
// where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0]
Mat3 R = c*Mat3::eye() + c1*rrt + s*r_x;
rotation(R);
}
}
//Combines rotation methods above. Supports 3x3, 1x3, 3x1 sizes of data matrix;
template<typename T> inline
void cv::Affine3<T>::rotation(const cv::Mat& data)
{
CV_Assert(data.type() == cv::traits::Type<T>::value);
CV_Assert(data.channels() == 1);
if (data.cols == 3 && data.rows == 3)
{
Mat3 R;
data.copyTo(R);
rotation(R);
}
else if ((data.cols == 3 && data.rows == 1) || (data.cols == 1 && data.rows == 3))
{
Vec3 _rvec;
data.reshape(1, 3).copyTo(_rvec);
rotation(_rvec);
}
else
CV_Error(Error::StsError, "Input matrix can only be 3x3, 1x3 or 3x1");
}
template<typename T> inline
void cv::Affine3<T>::linear(const Mat3& L)
{
matrix.val[0] = L.val[0]; matrix.val[1] = L.val[1]; matrix.val[ 2] = L.val[2];
matrix.val[4] = L.val[3]; matrix.val[5] = L.val[4]; matrix.val[ 6] = L.val[5];
matrix.val[8] = L.val[6]; matrix.val[9] = L.val[7]; matrix.val[10] = L.val[8];
}
template<typename T> inline
void cv::Affine3<T>::translation(const Vec3& t)
{
matrix.val[3] = t[0]; matrix.val[7] = t[1]; matrix.val[11] = t[2];
}
template<typename T> inline
typename cv::Affine3<T>::Mat3 cv::Affine3<T>::rotation() const
{
return linear();
}
template<typename T> inline
typename cv::Affine3<T>::Mat3 cv::Affine3<T>::linear() const
{
typename cv::Affine3<T>::Mat3 R;
R.val[0] = matrix.val[0]; R.val[1] = matrix.val[1]; R.val[2] = matrix.val[ 2];
R.val[3] = matrix.val[4]; R.val[4] = matrix.val[5]; R.val[5] = matrix.val[ 6];
R.val[6] = matrix.val[8]; R.val[7] = matrix.val[9]; R.val[8] = matrix.val[10];
return R;
}
template<typename T> inline
typename cv::Affine3<T>::Vec3 cv::Affine3<T>::translation() const
{
return Vec3(matrix.val[3], matrix.val[7], matrix.val[11]);
}
template<typename T> inline
typename cv::Affine3<T>::Vec3 cv::Affine3<T>::rvec() const
{
cv::Vec3d w;
cv::Matx33d u, vt, R = rotation();
cv::SVD::compute(R, w, u, vt, cv::SVD::FULL_UV + cv::SVD::MODIFY_A);
R = u * vt;
double rx = R.val[7] - R.val[5];
double ry = R.val[2] - R.val[6];
double rz = R.val[3] - R.val[1];
double s = std::sqrt((rx*rx + ry*ry + rz*rz)*0.25);
double c = (R.val[0] + R.val[4] + R.val[8] - 1) * 0.5;
c = c > 1.0 ? 1.0 : c < -1.0 ? -1.0 : c;
double theta = std::acos(c);
if( s < 1e-5 )
{
if( c > 0 )
rx = ry = rz = 0;
else
{
double t;
t = (R.val[0] + 1) * 0.5;
rx = std::sqrt(std::max(t, 0.0));
t = (R.val[4] + 1) * 0.5;
ry = std::sqrt(std::max(t, 0.0)) * (R.val[1] < 0 ? -1.0 : 1.0);
t = (R.val[8] + 1) * 0.5;
rz = std::sqrt(std::max(t, 0.0)) * (R.val[2] < 0 ? -1.0 : 1.0);
if( fabs(rx) < fabs(ry) && fabs(rx) < fabs(rz) && (R.val[5] > 0) != (ry*rz > 0) )
rz = -rz;
theta /= std::sqrt(rx*rx + ry*ry + rz*rz);
rx *= theta;
ry *= theta;
rz *= theta;
}
}
else
{
double vth = 1/(2*s);
vth *= theta;
rx *= vth; ry *= vth; rz *= vth;
}
return cv::Vec3d(rx, ry, rz);
}
template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::inv(int method) const
{
return matrix.inv(method);
}
template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::rotate(const Mat3& R) const
{
Mat3 Lc = linear();
Vec3 tc = translation();
Mat4 result;
result.val[12] = result.val[13] = result.val[14] = 0;
result.val[15] = 1;
for(int j = 0; j < 3; ++j)
{
for(int i = 0; i < 3; ++i)
{
float_type value = 0;
for(int k = 0; k < 3; ++k)
value += R(j, k) * Lc(k, i);
result(j, i) = value;
}
result(j, 3) = R.row(j).dot(tc.t());
}
return result;
}
template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::rotate(const Vec3& _rvec) const
{
return rotate(Affine3f(_rvec).rotation());
}
template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::translate(const Vec3& t) const
{
Mat4 m = matrix;
m.val[ 3] += t[0];
m.val[ 7] += t[1];
m.val[11] += t[2];
return m;
}
template<typename T> inline
cv::Affine3<T> cv::Affine3<T>::concatenate(const Affine3<T>& affine) const
{
return (*this).rotate(affine.rotation()).translate(affine.translation());
}
template<typename T> template <typename Y> inline
cv::Affine3<T>::operator Affine3<Y>() const
{
return Affine3<Y>(matrix);
}
template<typename T> template <typename Y> inline
cv::Affine3<Y> cv::Affine3<T>::cast() const
{
return Affine3<Y>(matrix);
}
template<typename T> inline
cv::Affine3<T> cv::operator*(const cv::Affine3<T>& affine1, const cv::Affine3<T>& affine2)
{
return affine2.concatenate(affine1);
}
template<typename T, typename V> inline
V cv::operator*(const cv::Affine3<T>& affine, const V& v)
{
const typename Affine3<T>::Mat4& m = affine.matrix;
V r;
r.x = m.val[0] * v.x + m.val[1] * v.y + m.val[ 2] * v.z + m.val[ 3];
r.y = m.val[4] * v.x + m.val[5] * v.y + m.val[ 6] * v.z + m.val[ 7];
r.z = m.val[8] * v.x + m.val[9] * v.y + m.val[10] * v.z + m.val[11];
return r;
}
static inline
cv::Vec3f cv::operator*(const cv::Affine3f& affine, const cv::Vec3f& v)
{
const cv::Matx44f& m = affine.matrix;
cv::Vec3f r;
r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
return r;
}
static inline
cv::Vec3d cv::operator*(const cv::Affine3d& affine, const cv::Vec3d& v)
{
const cv::Matx44d& m = affine.matrix;
cv::Vec3d r;
r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3];
r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7];
r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11];
return r;
}
#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H
template<typename T> inline
cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>& affine)
{
cv::Mat(4, 4, cv::traits::Type<T>::value, affine.matrix().data()).copyTo(matrix);
}
template<typename T> inline
cv::Affine3<T>::Affine3(const Eigen::Transform<T, 3, Eigen::Affine>& affine)
{
Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> a = affine;
cv::Mat(4, 4, cv::traits::Type<T>::value, a.matrix().data()).copyTo(matrix);
}
template<typename T> inline
cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>() const
{
Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)> r;
cv::Mat hdr(4, 4, cv::traits::Type<T>::value, r.matrix().data());
cv::Mat(matrix, false).copyTo(hdr);
return r;
}
template<typename T> inline
cv::Affine3<T>::operator Eigen::Transform<T, 3, Eigen::Affine>() const
{
return this->operator Eigen::Transform<T, 3, Eigen::Affine, (Eigen::RowMajor)>();
}
#endif /* defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H */
//! @endcond
#endif /* __cplusplus */
#endif /* OPENCV_CORE_AFFINE3_HPP */

View File

@@ -0,0 +1,105 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_CORE_ASYNC_HPP
#define OPENCV_CORE_ASYNC_HPP
#include <opencv2/core/mat.hpp>
#ifdef CV_CXX11
//#include <future>
#include <chrono>
#endif
namespace cv {
/** @addtogroup core_async
@{
*/
/** @brief Returns result of asynchronous operations
Object has attached asynchronous state.
Assignment operator doesn't clone asynchronous state (it is shared between all instances).
Result can be fetched via get() method only once.
*/
class CV_EXPORTS_W AsyncArray
{
public:
~AsyncArray() CV_NOEXCEPT;
CV_WRAP AsyncArray() CV_NOEXCEPT;
AsyncArray(const AsyncArray& o) CV_NOEXCEPT;
AsyncArray& operator=(const AsyncArray& o) CV_NOEXCEPT;
CV_WRAP void release() CV_NOEXCEPT;
/** Fetch the result.
@param[out] dst destination array
Waits for result until container has valid result.
Throws exception if exception was stored as a result.
Throws exception on invalid container state.
@note Result or stored exception can be fetched only once.
*/
CV_WRAP void get(OutputArray dst) const;
/** Retrieving the result with timeout
@param[out] dst destination array
@param[in] timeoutNs timeout in nanoseconds, -1 for infinite wait
@returns true if result is ready, false if the timeout has expired
@note Result or stored exception can be fetched only once.
*/
bool get(OutputArray dst, int64 timeoutNs) const;
CV_WRAP inline
bool get(OutputArray dst, double timeoutNs) const { return get(dst, (int64)timeoutNs); }
bool wait_for(int64 timeoutNs) const;
CV_WRAP inline
bool wait_for(double timeoutNs) const { return wait_for((int64)timeoutNs); }
CV_WRAP bool valid() const CV_NOEXCEPT;
#ifdef CV_CXX11
inline AsyncArray(AsyncArray&& o) { p = o.p; o.p = NULL; }
inline AsyncArray& operator=(AsyncArray&& o) CV_NOEXCEPT { std::swap(p, o.p); return *this; }
template<typename _Rep, typename _Period>
inline bool get(OutputArray dst, const std::chrono::duration<_Rep, _Period>& timeout)
{
return get(dst, (int64)(std::chrono::nanoseconds(timeout).count()));
}
template<typename _Rep, typename _Period>
inline bool wait_for(const std::chrono::duration<_Rep, _Period>& timeout)
{
return wait_for((int64)(std::chrono::nanoseconds(timeout).count()));
}
#if 0
std::future<Mat> getFutureMat() const;
std::future<UMat> getFutureUMat() const;
#endif
#endif
// PImpl
struct Impl; friend struct Impl;
inline void* _getImpl() const CV_NOEXCEPT { return p; }
protected:
Impl* p;
};
//! @}
} // namespace
#endif // OPENCV_CORE_ASYNC_HPP

View File

@@ -0,0 +1,664 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2014, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CORE_BASE_HPP
#define OPENCV_CORE_BASE_HPP
#ifndef __cplusplus
# error base.hpp header must be compiled as C++
#endif
#include "opencv2/opencv_modules.hpp"
#include <climits>
#include <algorithm>
#include "opencv2/core/cvdef.h"
#include "opencv2/core/cvstd.hpp"
namespace cv
{
//! @addtogroup core_utils
//! @{
namespace Error {
//! error codes
enum Code {
StsOk= 0, //!< everything is ok
StsBackTrace= -1, //!< pseudo error for back trace
StsError= -2, //!< unknown /unspecified error
StsInternal= -3, //!< internal error (bad state)
StsNoMem= -4, //!< insufficient memory
StsBadArg= -5, //!< function arg/param is bad
StsBadFunc= -6, //!< unsupported function
StsNoConv= -7, //!< iteration didn't converge
StsAutoTrace= -8, //!< tracing
HeaderIsNull= -9, //!< image header is NULL
BadImageSize= -10, //!< image size is invalid
BadOffset= -11, //!< offset is invalid
BadDataPtr= -12, //!<
BadStep= -13, //!< image step is wrong, this may happen for a non-continuous matrix.
BadModelOrChSeq= -14, //!<
BadNumChannels= -15, //!< bad number of channels, for example, some functions accept only single channel matrices.
BadNumChannel1U= -16, //!<
BadDepth= -17, //!< input image depth is not supported by the function
BadAlphaChannel= -18, //!<
BadOrder= -19, //!< number of dimensions is out of range
BadOrigin= -20, //!< incorrect input origin
BadAlign= -21, //!< incorrect input align
BadCallBack= -22, //!<
BadTileSize= -23, //!<
BadCOI= -24, //!< input COI is not supported
BadROISize= -25, //!< incorrect input roi
MaskIsTiled= -26, //!<
StsNullPtr= -27, //!< null pointer
StsVecLengthErr= -28, //!< incorrect vector length
StsFilterStructContentErr= -29, //!< incorrect filter structure content
StsKernelStructContentErr= -30, //!< incorrect transform kernel content
StsFilterOffsetErr= -31, //!< incorrect filter offset value
StsBadSize= -201, //!< the input/output structure size is incorrect
StsDivByZero= -202, //!< division by zero
StsInplaceNotSupported= -203, //!< in-place operation is not supported
StsObjectNotFound= -204, //!< request can't be completed
StsUnmatchedFormats= -205, //!< formats of input/output arrays differ
StsBadFlag= -206, //!< flag is wrong or not supported
StsBadPoint= -207, //!< bad CvPoint
StsBadMask= -208, //!< bad format of mask (neither 8uC1 nor 8sC1)
StsUnmatchedSizes= -209, //!< sizes of input/output structures do not match
StsUnsupportedFormat= -210, //!< the data format/type is not supported by the function
StsOutOfRange= -211, //!< some of parameters are out of range
StsParseError= -212, //!< invalid syntax/structure of the parsed file
StsNotImplemented= -213, //!< the requested function/feature is not implemented
StsBadMemBlock= -214, //!< an allocated block has been corrupted
StsAssert= -215, //!< assertion failed
GpuNotSupported= -216, //!< no CUDA support
GpuApiCallError= -217, //!< GPU API call error
OpenGlNotSupported= -218, //!< no OpenGL support
OpenGlApiCallError= -219, //!< OpenGL API call error
OpenCLApiCallError= -220, //!< OpenCL API call error
OpenCLDoubleNotSupported= -221,
OpenCLInitError= -222, //!< OpenCL initialization error
OpenCLNoAMDBlasFft= -223
};
} //Error
//! @} core_utils
//! @addtogroup core_array
//! @{
//! matrix decomposition types
enum DecompTypes {
/** Gaussian elimination with the optimal pivot element chosen. */
DECOMP_LU = 0,
/** singular value decomposition (SVD) method; the system can be over-defined and/or the matrix
src1 can be singular */
DECOMP_SVD = 1,
/** eigenvalue decomposition; the matrix src1 must be symmetrical */
DECOMP_EIG = 2,
/** Cholesky \f$LL^T\f$ factorization; the matrix src1 must be symmetrical and positively
defined */
DECOMP_CHOLESKY = 3,
/** QR factorization; the system can be over-defined and/or the matrix src1 can be singular */
DECOMP_QR = 4,
/** while all the previous flags are mutually exclusive, this flag can be used together with
any of the previous; it means that the normal equations
\f$\texttt{src1}^T\cdot\texttt{src1}\cdot\texttt{dst}=\texttt{src1}^T\texttt{src2}\f$ are
solved instead of the original system
\f$\texttt{src1}\cdot\texttt{dst}=\texttt{src2}\f$ */
DECOMP_NORMAL = 16
};
/** norm types
src1 and src2 denote input arrays.
*/
enum NormTypes {
/**
\f[
norm = \forkthree
{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_INF}\) }
\f]
*/
NORM_INF = 1,
/**
\f[
norm = \forkthree
{\| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\)}
{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L1}\) }
\f]*/
NORM_L1 = 2,
/**
\f[
norm = \forkthree
{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }
{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L2}\) }
\f]
*/
NORM_L2 = 4,
/**
\f[
norm = \forkthree
{ \| \texttt{src1} \| _{L_2} ^{2} = \sum_I \texttt{src1}(I)^2} {if \(\texttt{normType} = \texttt{NORM_L2SQR}\)}
{ \| \texttt{src1} - \texttt{src2} \| _{L_2} ^{2} = \sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2 }{if \(\texttt{normType} = \texttt{NORM_L2SQR}\) }
{ \left(\frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}}\right)^2 }{if \(\texttt{normType} = \texttt{NORM_RELATIVE | NORM_L2SQR}\) }
\f]
*/
NORM_L2SQR = 5,
/**
In the case of one input array, calculates the Hamming distance of the array from zero,
In the case of two input arrays, calculates the Hamming distance between the arrays.
*/
NORM_HAMMING = 6,
/**
Similar to NORM_HAMMING, but in the calculation, each two bits of the input sequence will
be added and treated as a single bit to be used in the same calculation as NORM_HAMMING.
*/
NORM_HAMMING2 = 7,
NORM_TYPE_MASK = 7, //!< bit-mask which can be used to separate norm type from norm flags
NORM_RELATIVE = 8, //!< flag
NORM_MINMAX = 32 //!< flag
};
//! comparison types
enum CmpTypes { CMP_EQ = 0, //!< src1 is equal to src2.
CMP_GT = 1, //!< src1 is greater than src2.
CMP_GE = 2, //!< src1 is greater than or equal to src2.
CMP_LT = 3, //!< src1 is less than src2.
CMP_LE = 4, //!< src1 is less than or equal to src2.
CMP_NE = 5 //!< src1 is unequal to src2.
};
//! generalized matrix multiplication flags
enum GemmFlags { GEMM_1_T = 1, //!< transposes src1
GEMM_2_T = 2, //!< transposes src2
GEMM_3_T = 4 //!< transposes src3
};
enum DftFlags {
/** performs an inverse 1D or 2D transform instead of the default forward
transform. */
DFT_INVERSE = 1,
/** scales the result: divide it by the number of array elements. Normally, it is
combined with DFT_INVERSE. */
DFT_SCALE = 2,
/** performs a forward or inverse transform of every individual row of the input
matrix; this flag enables you to transform multiple vectors simultaneously and can be used to
decrease the overhead (which is sometimes several times larger than the processing itself) to
perform 3D and higher-dimensional transformations and so forth.*/
DFT_ROWS = 4,
/** performs a forward transformation of 1D or 2D real array; the result,
though being a complex array, has complex-conjugate symmetry (*CCS*, see the function
description below for details), and such an array can be packed into a real array of the same
size as input, which is the fastest option and which is what the function does by default;
however, you may wish to get a full complex array (for simpler spectrum analysis, and so on) -
pass the flag to enable the function to produce a full-size complex output array. */
DFT_COMPLEX_OUTPUT = 16,
/** performs an inverse transformation of a 1D or 2D complex array; the
result is normally a complex array of the same size, however, if the input array has
conjugate-complex symmetry (for example, it is a result of forward transformation with
DFT_COMPLEX_OUTPUT flag), the output is a real array; while the function itself does not
check whether the input is symmetrical or not, you can pass the flag and then the function
will assume the symmetry and produce the real output array (note that when the input is packed
into a real array and inverse transformation is executed, the function treats the input as a
packed complex-conjugate symmetrical array, and the output will also be a real array). */
DFT_REAL_OUTPUT = 32,
/** specifies that input is complex input. If this flag is set, the input must have 2 channels.
On the other hand, for backwards compatibility reason, if input has 2 channels, input is
already considered complex. */
DFT_COMPLEX_INPUT = 64,
/** performs an inverse 1D or 2D transform instead of the default forward transform. */
DCT_INVERSE = DFT_INVERSE,
/** performs a forward or inverse transform of every individual row of the input
matrix. This flag enables you to transform multiple vectors simultaneously and can be used to
decrease the overhead (which is sometimes several times larger than the processing itself) to
perform 3D and higher-dimensional transforms and so forth.*/
DCT_ROWS = DFT_ROWS
};
//! Various border types, image boundaries are denoted with `|`
//! @see borderInterpolate, copyMakeBorder
enum BorderTypes {
BORDER_CONSTANT = 0, //!< `iiiiii|abcdefgh|iiiiiii` with some specified `i`
BORDER_REPLICATE = 1, //!< `aaaaaa|abcdefgh|hhhhhhh`
BORDER_REFLECT = 2, //!< `fedcba|abcdefgh|hgfedcb`
BORDER_WRAP = 3, //!< `cdefgh|abcdefgh|abcdefg`
BORDER_REFLECT_101 = 4, //!< `gfedcb|abcdefgh|gfedcba`
BORDER_TRANSPARENT = 5, //!< `uvwxyz|abcdefgh|ijklmno`
BORDER_REFLECT101 = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101
BORDER_DEFAULT = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101
BORDER_ISOLATED = 16 //!< do not look outside of ROI
};
//! @} core_array
//! @addtogroup core_utils
//! @{
/*! @brief Signals an error and raises the exception.
By default the function prints information about the error to stderr,
then it either stops if setBreakOnError() had been called before or raises the exception.
It is possible to alternate error processing by using redirectError().
@param _code - error code (Error::Code)
@param _err - error description
@param _func - function name. Available only when the compiler supports getting it
@param _file - source file name where the error has occurred
@param _line - line number in the source file where the error has occurred
@see CV_Error, CV_Error_, CV_Assert, CV_DbgAssert
*/
CV_EXPORTS CV_NORETURN void error(int _code, const String& _err, const char* _func, const char* _file, int _line);
#ifdef CV_STATIC_ANALYSIS
// In practice, some macro are not processed correctly (noreturn is not detected).
// We need to use simplified definition for them.
#define CV_Error(code, msg) do { (void)(code); (void)(msg); abort(); } while (0)
#define CV_Error_(code, args) do { (void)(code); (void)(cv::format args); abort(); } while (0)
#define CV_Assert( expr ) do { if (!(expr)) abort(); } while (0)
#else // CV_STATIC_ANALYSIS
/** @brief Call the error handler.
Currently, the error handler prints the error code and the error message to the standard
error stream `stderr`. In the Debug configuration, it then provokes memory access violation, so that
the execution stack and all the parameters can be analyzed by the debugger. In the Release
configuration, the exception is thrown.
@param code one of Error::Code
@param msg error message
*/
#define CV_Error( code, msg ) cv::error( code, msg, CV_Func, __FILE__, __LINE__ )
/** @brief Call the error handler.
This macro can be used to construct an error message on-fly to include some dynamic information,
for example:
@code
// note the extra parentheses around the formatted text message
CV_Error_(Error::StsOutOfRange,
("the value at (%d, %d)=%g is out of range", badPt.x, badPt.y, badValue));
@endcode
@param code one of Error::Code
@param args printf-like formatted error message in parentheses
*/
#define CV_Error_( code, args ) cv::error( code, cv::format args, CV_Func, __FILE__, __LINE__ )
/** @brief Checks a condition at runtime and throws exception if it fails
The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. If it is 0, the macros
raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release
configurations while CV_DbgAssert is only retained in the Debug configuration.
*/
#define CV_Assert( expr ) do { if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ); } while(0)
#endif // CV_STATIC_ANALYSIS
//! @cond IGNORED
#if !defined(__OPENCV_BUILD) // TODO: backward compatibility only
#ifndef CV_ErrorNoReturn
#define CV_ErrorNoReturn CV_Error
#endif
#ifndef CV_ErrorNoReturn_
#define CV_ErrorNoReturn_ CV_Error_
#endif
#endif
#define CV_Assert_1 CV_Assert
#define CV_Assert_2( expr, ... ) CV_Assert_1(expr); __CV_EXPAND(CV_Assert_1( __VA_ARGS__ ))
#define CV_Assert_3( expr, ... ) CV_Assert_1(expr); __CV_EXPAND(CV_Assert_2( __VA_ARGS__ ))
#define CV_Assert_4( expr, ... ) CV_Assert_1(expr); __CV_EXPAND(CV_Assert_3( __VA_ARGS__ ))
#define CV_Assert_5( expr, ... ) CV_Assert_1(expr); __CV_EXPAND(CV_Assert_4( __VA_ARGS__ ))
#define CV_Assert_6( expr, ... ) CV_Assert_1(expr); __CV_EXPAND(CV_Assert_5( __VA_ARGS__ ))
#define CV_Assert_7( expr, ... ) CV_Assert_1(expr); __CV_EXPAND(CV_Assert_6( __VA_ARGS__ ))
#define CV_Assert_8( expr, ... ) CV_Assert_1(expr); __CV_EXPAND(CV_Assert_7( __VA_ARGS__ ))
#define CV_Assert_9( expr, ... ) CV_Assert_1(expr); __CV_EXPAND(CV_Assert_8( __VA_ARGS__ ))
#define CV_Assert_10( expr, ... ) CV_Assert_1(expr); __CV_EXPAND(CV_Assert_9( __VA_ARGS__ ))
#define CV_Assert_N(...) do { __CV_EXPAND(__CV_CAT(CV_Assert_, __CV_VA_NUM_ARGS(__VA_ARGS__)) (__VA_ARGS__)); } while(0)
//! @endcond
#if defined _DEBUG || defined CV_STATIC_ANALYSIS
# define CV_DbgAssert(expr) CV_Assert(expr)
#else
/** replaced with CV_Assert(expr) in Debug configuration */
# define CV_DbgAssert(expr)
#endif
/*
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
* bit count of A exclusive XOR'ed with B
*/
struct CV_EXPORTS Hamming
{
static const NormTypes normType = NORM_HAMMING;
typedef unsigned char ValueType;
typedef int ResultType;
/** this will count the bits in a ^ b
*/
ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const;
};
typedef Hamming HammingLUT;
/////////////////////////////////// inline norms ////////////////////////////////////
template<typename _Tp> inline _Tp cv_abs(_Tp x) { return std::abs(x); }
inline int cv_abs(uchar x) { return x; }
inline int cv_abs(schar x) { return std::abs(x); }
inline int cv_abs(ushort x) { return x; }
inline int cv_abs(short x) { return std::abs(x); }
template<typename _Tp, typename _AccTp> static inline
_AccTp normL2Sqr(const _Tp* a, int n)
{
_AccTp s = 0;
int i=0;
#if CV_ENABLE_UNROLLED
for( ; i <= n - 4; i += 4 )
{
_AccTp v0 = a[i], v1 = a[i+1], v2 = a[i+2], v3 = a[i+3];
s += v0*v0 + v1*v1 + v2*v2 + v3*v3;
}
#endif
for( ; i < n; i++ )
{
_AccTp v = a[i];
s += v*v;
}
return s;
}
template<typename _Tp, typename _AccTp> static inline
_AccTp normL1(const _Tp* a, int n)
{
_AccTp s = 0;
int i = 0;
#if CV_ENABLE_UNROLLED
for(; i <= n - 4; i += 4 )
{
s += (_AccTp)cv_abs(a[i]) + (_AccTp)cv_abs(a[i+1]) +
(_AccTp)cv_abs(a[i+2]) + (_AccTp)cv_abs(a[i+3]);
}
#endif
for( ; i < n; i++ )
s += cv_abs(a[i]);
return s;
}
template<typename _Tp, typename _AccTp> static inline
_AccTp normInf(const _Tp* a, int n)
{
_AccTp s = 0;
for( int i = 0; i < n; i++ )
s = std::max(s, (_AccTp)cv_abs(a[i]));
return s;
}
template<typename _Tp, typename _AccTp> static inline
_AccTp normL2Sqr(const _Tp* a, const _Tp* b, int n)
{
_AccTp s = 0;
int i= 0;
#if CV_ENABLE_UNROLLED
for(; i <= n - 4; i += 4 )
{
_AccTp v0 = _AccTp(a[i] - b[i]), v1 = _AccTp(a[i+1] - b[i+1]), v2 = _AccTp(a[i+2] - b[i+2]), v3 = _AccTp(a[i+3] - b[i+3]);
s += v0*v0 + v1*v1 + v2*v2 + v3*v3;
}
#endif
for( ; i < n; i++ )
{
_AccTp v = _AccTp(a[i] - b[i]);
s += v*v;
}
return s;
}
static inline float normL2Sqr(const float* a, const float* b, int n)
{
float s = 0.f;
for( int i = 0; i < n; i++ )
{
float v = a[i] - b[i];
s += v*v;
}
return s;
}
template<typename _Tp, typename _AccTp> static inline
_AccTp normL1(const _Tp* a, const _Tp* b, int n)
{
_AccTp s = 0;
int i= 0;
#if CV_ENABLE_UNROLLED
for(; i <= n - 4; i += 4 )
{
_AccTp v0 = _AccTp(a[i] - b[i]), v1 = _AccTp(a[i+1] - b[i+1]), v2 = _AccTp(a[i+2] - b[i+2]), v3 = _AccTp(a[i+3] - b[i+3]);
s += std::abs(v0) + std::abs(v1) + std::abs(v2) + std::abs(v3);
}
#endif
for( ; i < n; i++ )
{
_AccTp v = _AccTp(a[i] - b[i]);
s += std::abs(v);
}
return s;
}
inline float normL1(const float* a, const float* b, int n)
{
float s = 0.f;
for( int i = 0; i < n; i++ )
{
s += std::abs(a[i] - b[i]);
}
return s;
}
inline int normL1(const uchar* a, const uchar* b, int n)
{
int s = 0;
for( int i = 0; i < n; i++ )
{
s += std::abs(a[i] - b[i]);
}
return s;
}
template<typename _Tp, typename _AccTp> static inline
_AccTp normInf(const _Tp* a, const _Tp* b, int n)
{
_AccTp s = 0;
for( int i = 0; i < n; i++ )
{
_AccTp v0 = a[i] - b[i];
s = std::max(s, std::abs(v0));
}
return s;
}
/** @brief Computes the cube root of an argument.
The function cubeRoot computes \f$\sqrt[3]{\texttt{val}}\f$. Negative arguments are handled correctly.
NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for
single-precision data.
@param val A function argument.
*/
CV_EXPORTS_W float cubeRoot(float val);
/** @overload
cubeRoot with argument of `double` type calls `std::cbrt(double)`
*/
static inline
double cubeRoot(double val)
{
return std::cbrt(val);
}
/** @brief Calculates the angle of a 2D vector in degrees.
The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured
in degrees and varies from 0 to 360 degrees. The accuracy is about 0.3 degrees.
@param x x-coordinate of the vector.
@param y y-coordinate of the vector.
*/
CV_EXPORTS_W float fastAtan2(float y, float x);
/** proxy for hal::LU */
CV_EXPORTS int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n);
/** proxy for hal::LU */
CV_EXPORTS int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n);
/** proxy for hal::Cholesky */
CV_EXPORTS bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n);
/** proxy for hal::Cholesky */
CV_EXPORTS bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n);
////////////////// forward declarations for important OpenCV types //////////////////
//! @cond IGNORED
template<typename _Tp, int cn> class Vec;
template<typename _Tp, int m, int n> class Matx;
template<typename _Tp> class Complex;
template<typename _Tp> class Point_;
template<typename _Tp> class Point3_;
template<typename _Tp> class Size_;
template<typename _Tp> class Rect_;
template<typename _Tp> class Scalar_;
class CV_EXPORTS RotatedRect;
class CV_EXPORTS Range;
class CV_EXPORTS TermCriteria;
class CV_EXPORTS KeyPoint;
class CV_EXPORTS DMatch;
class CV_EXPORTS RNG;
class CV_EXPORTS Mat;
class CV_EXPORTS MatExpr;
class CV_EXPORTS UMat;
class CV_EXPORTS SparseMat;
typedef Mat MatND;
template<typename _Tp> class Mat_;
template<typename _Tp> class SparseMat_;
class CV_EXPORTS MatConstIterator;
class CV_EXPORTS SparseMatIterator;
class CV_EXPORTS SparseMatConstIterator;
template<typename _Tp> class MatIterator_;
template<typename _Tp> class MatConstIterator_;
template<typename _Tp> class SparseMatIterator_;
template<typename _Tp> class SparseMatConstIterator_;
namespace ogl
{
class CV_EXPORTS Buffer;
class CV_EXPORTS Texture2D;
class CV_EXPORTS Arrays;
}
namespace cuda
{
class CV_EXPORTS GpuMat;
class CV_EXPORTS HostMem;
class CV_EXPORTS Stream;
class CV_EXPORTS Event;
}
namespace cudev
{
template <typename _Tp> class GpuMat_;
}
namespace ipp
{
CV_EXPORTS unsigned long long getIppFeatures();
CV_EXPORTS void setIppStatus(int status, const char * const funcname = NULL, const char * const filename = NULL,
int line = 0);
CV_EXPORTS int getIppStatus();
CV_EXPORTS String getIppErrorLocation();
CV_EXPORTS_W bool useIPP();
CV_EXPORTS_W void setUseIPP(bool flag);
CV_EXPORTS_W String getIppVersion();
// IPP Not-Exact mode. This function may force use of IPP then both IPP and OpenCV provide proper results
// but have internal accuracy differences which have too much direct or indirect impact on accuracy tests.
CV_EXPORTS_W bool useIPP_NotExact();
CV_EXPORTS_W void setUseIPP_NotExact(bool flag);
#ifndef DISABLE_OPENCV_3_COMPATIBILITY
static inline bool useIPP_NE() { return useIPP_NotExact(); }
static inline void setUseIPP_NE(bool flag) { setUseIPP_NotExact(flag); }
#endif
} // ipp
//! @endcond
//! @} core_utils
} // cv
#include "opencv2/core/neon_utils.hpp"
#include "opencv2/core/vsx_utils.hpp"
#include "opencv2/core/check.hpp"
#endif //OPENCV_CORE_BASE_HPP

View File

@@ -0,0 +1,301 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_CORE_BINDINGS_UTILS_HPP
#define OPENCV_CORE_BINDINGS_UTILS_HPP
#include <opencv2/core/async.hpp>
#include <opencv2/core/detail/async_promise.hpp>
#include <opencv2/core/utils/logger.hpp>
#include <stdexcept>
namespace cv { namespace utils {
//! @addtogroup core_utils
//! @{
CV_EXPORTS_W String dumpInputArray(InputArray argument);
CV_EXPORTS_W String dumpInputArrayOfArrays(InputArrayOfArrays argument);
CV_EXPORTS_W String dumpInputOutputArray(InputOutputArray argument);
CV_EXPORTS_W String dumpInputOutputArrayOfArrays(InputOutputArrayOfArrays argument);
CV_WRAP static inline
String dumpBool(bool argument)
{
return (argument) ? String("Bool: True") : String("Bool: False");
}
CV_WRAP static inline
String dumpInt(int argument)
{
return cv::format("Int: %d", argument);
}
CV_WRAP static inline
String dumpSizeT(size_t argument)
{
std::ostringstream oss("size_t: ", std::ios::ate);
oss << argument;
return oss.str();
}
CV_WRAP static inline
String dumpFloat(float argument)
{
return cv::format("Float: %.2f", argument);
}
CV_WRAP static inline
String dumpDouble(double argument)
{
return cv::format("Double: %.2f", argument);
}
CV_WRAP static inline
String dumpCString(const char* argument)
{
return cv::format("String: %s", argument);
}
CV_WRAP static inline
String dumpString(const String& argument)
{
return cv::format("String: %s", argument.c_str());
}
CV_WRAP static inline
String testOverloadResolution(int value, const Point& point = Point(42, 24))
{
return format("overload (int=%d, point=(x=%d, y=%d))", value, point.x,
point.y);
}
CV_WRAP static inline
String testOverloadResolution(const Rect& rect)
{
return format("overload (rect=(x=%d, y=%d, w=%d, h=%d))", rect.x, rect.y,
rect.width, rect.height);
}
CV_WRAP static inline
String dumpRect(const Rect& argument)
{
return format("rect: (x=%d, y=%d, w=%d, h=%d)", argument.x, argument.y,
argument.width, argument.height);
}
CV_WRAP static inline
String dumpTermCriteria(const TermCriteria& argument)
{
return format("term_criteria: (type=%d, max_count=%d, epsilon=%lf",
argument.type, argument.maxCount, argument.epsilon);
}
CV_WRAP static inline
String dumpRotatedRect(const RotatedRect& argument)
{
return format("rotated_rect: (c_x=%f, c_y=%f, w=%f, h=%f, a=%f)",
argument.center.x, argument.center.y, argument.size.width,
argument.size.height, argument.angle);
}
CV_WRAP static inline
RotatedRect testRotatedRect(float x, float y, float w, float h, float angle)
{
return RotatedRect(Point2f(x, y), Size2f(w, h), angle);
}
CV_WRAP static inline
std::vector<RotatedRect> testRotatedRectVector(float x, float y, float w, float h, float angle)
{
std::vector<RotatedRect> result;
for (int i = 0; i < 10; i++)
result.push_back(RotatedRect(Point2f(x + i, y + 2 * i), Size2f(w, h), angle + 10 * i));
return result;
}
CV_WRAP static inline
String dumpRange(const Range& argument)
{
if (argument == Range::all())
{
return "range: all";
}
else
{
return format("range: (s=%d, e=%d)", argument.start, argument.end);
}
}
CV_WRAP static inline
int testOverwriteNativeMethod(int argument)
{
return argument;
}
CV_WRAP static inline
String testReservedKeywordConversion(int positional_argument, int lambda = 2, int from = 3)
{
return format("arg=%d, lambda=%d, from=%d", positional_argument, lambda, from);
}
CV_EXPORTS_W String dumpVectorOfInt(const std::vector<int>& vec);
CV_EXPORTS_W String dumpVectorOfDouble(const std::vector<double>& vec);
CV_EXPORTS_W String dumpVectorOfRect(const std::vector<Rect>& vec);
CV_WRAP static inline
void generateVectorOfRect(size_t len, CV_OUT std::vector<Rect>& vec)
{
vec.resize(len);
if (len > 0)
{
RNG rng(12345);
Mat tmp(static_cast<int>(len), 1, CV_32SC4);
rng.fill(tmp, RNG::UNIFORM, 10, 20);
tmp.copyTo(vec);
}
}
CV_WRAP static inline
void generateVectorOfInt(size_t len, CV_OUT std::vector<int>& vec)
{
vec.resize(len);
if (len > 0)
{
RNG rng(554433);
Mat tmp(static_cast<int>(len), 1, CV_32SC1);
rng.fill(tmp, RNG::UNIFORM, -10, 10);
tmp.copyTo(vec);
}
}
CV_WRAP static inline
void generateVectorOfMat(size_t len, int rows, int cols, int dtype, CV_OUT std::vector<Mat>& vec)
{
vec.resize(len);
if (len > 0)
{
RNG rng(65431);
for (size_t i = 0; i < len; ++i)
{
vec[i].create(rows, cols, dtype);
rng.fill(vec[i], RNG::UNIFORM, 0, 10);
}
}
}
CV_WRAP static inline
void testRaiseGeneralException()
{
throw std::runtime_error("exception text");
}
CV_WRAP static inline
AsyncArray testAsyncArray(InputArray argument)
{
AsyncPromise p;
p.setValue(argument);
return p.getArrayResult();
}
CV_WRAP static inline
AsyncArray testAsyncException()
{
AsyncPromise p;
try
{
CV_Error(Error::StsOk, "Test: Generated async error");
}
catch (const cv::Exception& e)
{
p.setException(e);
}
return p.getArrayResult();
}
namespace nested {
CV_WRAP static inline bool testEchoBooleanFunction(bool flag) {
return flag;
}
class CV_EXPORTS_W CV_WRAP_AS(ExportClassName) OriginalClassName
{
public:
struct CV_EXPORTS_W_SIMPLE Params
{
CV_PROP_RW int int_value;
CV_PROP_RW float float_value;
CV_WRAP explicit Params(int int_param = 123, float float_param = 3.5f)
{
int_value = int_param;
float_value = float_param;
}
};
explicit OriginalClassName(const OriginalClassName::Params& params = OriginalClassName::Params())
{
params_ = params;
}
CV_WRAP int getIntParam() const
{
return params_.int_value;
}
CV_WRAP float getFloatParam() const
{
return params_.float_value;
}
CV_WRAP static std::string originalName()
{
return "OriginalClassName";
}
CV_WRAP static Ptr<OriginalClassName>
create(const OriginalClassName::Params& params = OriginalClassName::Params())
{
return makePtr<OriginalClassName>(params);
}
private:
OriginalClassName::Params params_;
};
typedef OriginalClassName::Params OriginalClassName_Params;
} // namespace nested
namespace fs {
CV_EXPORTS_W cv::String getCacheDirectoryForDownloads();
} // namespace fs
//! @} // core_utils
} // namespace cv::utils
//! @cond IGNORED
CV_WRAP static inline
int setLogLevel(int level)
{
// NB: Binding generators doesn't work with enums properly yet, so we define separate overload here
return cv::utils::logging::setLogLevel((cv::utils::logging::LogLevel)level);
}
CV_WRAP static inline
int getLogLevel()
{
return cv::utils::logging::getLogLevel();
}
//! @endcond IGNORED
} // namespaces cv / utils
#endif // OPENCV_CORE_BINDINGS_UTILS_HPP

View File

@@ -0,0 +1,40 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
#ifndef OPENCV_CORE_BUFFER_POOL_HPP
#define OPENCV_CORE_BUFFER_POOL_HPP
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4265)
#endif
namespace cv
{
//! @addtogroup core
//! @{
class BufferPoolController
{
protected:
~BufferPoolController() { }
public:
virtual size_t getReservedSize() const = 0;
virtual size_t getMaxReservedSize() const = 0;
virtual void setMaxReservedSize(size_t size) = 0;
virtual void freeAllReservedBuffers() = 0;
};
//! @}
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // OPENCV_CORE_BUFFER_POOL_HPP

View File

@@ -0,0 +1,160 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_CORE_CHECK_HPP
#define OPENCV_CORE_CHECK_HPP
#include <opencv2/core/base.hpp>
namespace cv {
/** Returns string of cv::Mat depth value: CV_8U -> "CV_8U" or "<invalid depth>" */
CV_EXPORTS const char* depthToString(int depth);
/** Returns string of cv::Mat depth value: CV_8UC3 -> "CV_8UC3" or "<invalid type>" */
CV_EXPORTS String typeToString(int type);
//! @cond IGNORED
namespace detail {
/** Returns string of cv::Mat depth value: CV_8U -> "CV_8U" or NULL */
CV_EXPORTS const char* depthToString_(int depth);
/** Returns string of cv::Mat depth value: CV_8UC3 -> "CV_8UC3" or cv::String() */
CV_EXPORTS cv::String typeToString_(int type);
enum TestOp {
TEST_CUSTOM = 0,
TEST_EQ = 1,
TEST_NE = 2,
TEST_LE = 3,
TEST_LT = 4,
TEST_GE = 5,
TEST_GT = 6,
CV__LAST_TEST_OP
};
struct CheckContext {
const char* func;
const char* file;
int line;
enum TestOp testOp;
const char* message;
const char* p1_str;
const char* p2_str;
};
#ifndef CV__CHECK_FILENAME
# define CV__CHECK_FILENAME __FILE__
#endif
#ifndef CV__CHECK_FUNCTION
# if defined _MSC_VER
# define CV__CHECK_FUNCTION __FUNCSIG__
# elif defined __GNUC__
# define CV__CHECK_FUNCTION __PRETTY_FUNCTION__
# else
# define CV__CHECK_FUNCTION "<unknown>"
# endif
#endif
#define CV__CHECK_LOCATION_VARNAME(id) CVAUX_CONCAT(CVAUX_CONCAT(__cv_check_, id), __LINE__)
#define CV__DEFINE_CHECK_CONTEXT(id, message, testOp, p1_str, p2_str) \
static const cv::detail::CheckContext CV__CHECK_LOCATION_VARNAME(id) = \
{ CV__CHECK_FUNCTION, CV__CHECK_FILENAME, __LINE__, testOp, "" message, "" p1_str, "" p2_str }
CV_EXPORTS void CV_NORETURN check_failed_auto(const int v1, const int v2, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_auto(const size_t v1, const size_t v2, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_auto(const float v1, const float v2, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_auto(const double v1, const double v2, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_auto(const Size_<int> v1, const Size_<int> v2, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_MatDepth(const int v1, const int v2, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_MatType(const int v1, const int v2, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_MatChannels(const int v1, const int v2, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_auto(const int v, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_auto(const size_t v, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_auto(const float v, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_auto(const double v, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_auto(const Size_<int> v, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_auto(const std::string& v1, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_MatDepth(const int v, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_MatType(const int v, const CheckContext& ctx);
CV_EXPORTS void CV_NORETURN check_failed_MatChannels(const int v, const CheckContext& ctx);
#define CV__TEST_EQ(v1, v2) ((v1) == (v2))
#define CV__TEST_NE(v1, v2) ((v1) != (v2))
#define CV__TEST_LE(v1, v2) ((v1) <= (v2))
#define CV__TEST_LT(v1, v2) ((v1) < (v2))
#define CV__TEST_GE(v1, v2) ((v1) >= (v2))
#define CV__TEST_GT(v1, v2) ((v1) > (v2))
#define CV__CHECK(id, op, type, v1, v2, v1_str, v2_str, msg_str) do { \
if(CV__TEST_##op((v1), (v2))) ; else { \
CV__DEFINE_CHECK_CONTEXT(id, msg_str, cv::detail::TEST_ ## op, v1_str, v2_str); \
cv::detail::check_failed_ ## type((v1), (v2), CV__CHECK_LOCATION_VARNAME(id)); \
} \
} while (0)
#define CV__CHECK_CUSTOM_TEST(id, type, v, test_expr, v_str, test_expr_str, msg_str) do { \
if(!!(test_expr)) ; else { \
CV__DEFINE_CHECK_CONTEXT(id, msg_str, cv::detail::TEST_CUSTOM, v_str, test_expr_str); \
cv::detail::check_failed_ ## type((v), CV__CHECK_LOCATION_VARNAME(id)); \
} \
} while (0)
} // namespace
//! @endcond
/// Supported values of these types: int, float, double
#define CV_CheckEQ(v1, v2, msg) CV__CHECK(_, EQ, auto, v1, v2, #v1, #v2, msg)
#define CV_CheckNE(v1, v2, msg) CV__CHECK(_, NE, auto, v1, v2, #v1, #v2, msg)
#define CV_CheckLE(v1, v2, msg) CV__CHECK(_, LE, auto, v1, v2, #v1, #v2, msg)
#define CV_CheckLT(v1, v2, msg) CV__CHECK(_, LT, auto, v1, v2, #v1, #v2, msg)
#define CV_CheckGE(v1, v2, msg) CV__CHECK(_, GE, auto, v1, v2, #v1, #v2, msg)
#define CV_CheckGT(v1, v2, msg) CV__CHECK(_, GT, auto, v1, v2, #v1, #v2, msg)
/// Check with additional "decoding" of type values in error message
#define CV_CheckTypeEQ(t1, t2, msg) CV__CHECK(_, EQ, MatType, t1, t2, #t1, #t2, msg)
/// Check with additional "decoding" of depth values in error message
#define CV_CheckDepthEQ(d1, d2, msg) CV__CHECK(_, EQ, MatDepth, d1, d2, #d1, #d2, msg)
#define CV_CheckChannelsEQ(c1, c2, msg) CV__CHECK(_, EQ, MatChannels, c1, c2, #c1, #c2, msg)
/// Example: type == CV_8UC1 || type == CV_8UC3
#define CV_CheckType(t, test_expr, msg) CV__CHECK_CUSTOM_TEST(_, MatType, t, (test_expr), #t, #test_expr, msg)
/// Example: depth == CV_32F || depth == CV_64F
#define CV_CheckDepth(t, test_expr, msg) CV__CHECK_CUSTOM_TEST(_, MatDepth, t, (test_expr), #t, #test_expr, msg)
/// Example: v == A || v == B
#define CV_Check(v, test_expr, msg) CV__CHECK_CUSTOM_TEST(_, auto, v, (test_expr), #v, #test_expr, msg)
/// Some complex conditions: CV_Check(src2, src2.empty() || (src2.type() == src1.type() && src2.size() == src1.size()), "src2 should have same size/type as src1")
// TODO define pretty-printers
#ifndef NDEBUG
#define CV_DbgCheck(v, test_expr, msg) CV__CHECK_CUSTOM_TEST(_, auto, v, (test_expr), #v, #test_expr, msg)
#define CV_DbgCheckEQ(v1, v2, msg) CV__CHECK(_, EQ, auto, v1, v2, #v1, #v2, msg)
#define CV_DbgCheckNE(v1, v2, msg) CV__CHECK(_, NE, auto, v1, v2, #v1, #v2, msg)
#define CV_DbgCheckLE(v1, v2, msg) CV__CHECK(_, LE, auto, v1, v2, #v1, #v2, msg)
#define CV_DbgCheckLT(v1, v2, msg) CV__CHECK(_, LT, auto, v1, v2, #v1, #v2, msg)
#define CV_DbgCheckGE(v1, v2, msg) CV__CHECK(_, GE, auto, v1, v2, #v1, #v2, msg)
#define CV_DbgCheckGT(v1, v2, msg) CV__CHECK(_, GT, auto, v1, v2, #v1, #v2, msg)
#else
#define CV_DbgCheck(v, test_expr, msg) do { } while (0)
#define CV_DbgCheckEQ(v1, v2, msg) do { } while (0)
#define CV_DbgCheckNE(v1, v2, msg) do { } while (0)
#define CV_DbgCheckLE(v1, v2, msg) do { } while (0)
#define CV_DbgCheckLT(v1, v2, msg) do { } while (0)
#define CV_DbgCheckGE(v1, v2, msg) do { } while (0)
#define CV_DbgCheckGT(v1, v2, msg) do { } while (0)
#endif
} // namespace
#endif // OPENCV_CORE_CHECK_HPP

View File

@@ -0,0 +1,48 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef __OPENCV_BUILD
#error this is a compatibility header which should not be used inside the OpenCV library
#endif
#include "opencv2/core.hpp"

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,723 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CORE_CUDAINL_HPP
#define OPENCV_CORE_CUDAINL_HPP
#include "opencv2/core/cuda.hpp"
//! @cond IGNORED
namespace cv { namespace cuda {
//===================================================================================
// GpuMat
//===================================================================================
inline
GpuMat::GpuMat(Allocator* allocator_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{}
inline
GpuMat::GpuMat(int rows_, int cols_, int type_, Allocator* allocator_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{
if (rows_ > 0 && cols_ > 0)
create(rows_, cols_, type_);
}
inline
GpuMat::GpuMat(Size size_, int type_, Allocator* allocator_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{
if (size_.height > 0 && size_.width > 0)
create(size_.height, size_.width, type_);
}
inline
GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_, Allocator* allocator_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{
if (rows_ > 0 && cols_ > 0)
{
create(rows_, cols_, type_);
setTo(s_);
}
}
inline
GpuMat::GpuMat(Size size_, int type_, Scalar s_, Allocator* allocator_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{
if (size_.height > 0 && size_.width > 0)
{
create(size_.height, size_.width, type_);
setTo(s_);
}
}
inline
GpuMat::GpuMat(const GpuMat& m)
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), allocator(m.allocator)
{
if (refcount)
CV_XADD(refcount, 1);
}
inline
GpuMat::GpuMat(InputArray arr, Allocator* allocator_) :
flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_)
{
upload(arr);
}
inline
GpuMat::~GpuMat()
{
release();
}
inline
GpuMat& GpuMat::operator =(const GpuMat& m)
{
if (this != &m)
{
GpuMat temp(m);
swap(temp);
}
return *this;
}
inline
void GpuMat::create(Size size_, int type_)
{
create(size_.height, size_.width, type_);
}
inline
void GpuMat::swap(GpuMat& b)
{
std::swap(flags, b.flags);
std::swap(rows, b.rows);
std::swap(cols, b.cols);
std::swap(step, b.step);
std::swap(data, b.data);
std::swap(datastart, b.datastart);
std::swap(dataend, b.dataend);
std::swap(refcount, b.refcount);
std::swap(allocator, b.allocator);
}
inline
GpuMat GpuMat::clone() const
{
GpuMat m;
copyTo(m);
return m;
}
inline
void GpuMat::copyTo(OutputArray dst, InputArray mask) const
{
copyTo(dst, mask, Stream::Null());
}
inline
GpuMat& GpuMat::setTo(Scalar s)
{
return setTo(s, Stream::Null());
}
inline
GpuMat& GpuMat::setTo(Scalar s, InputArray mask)
{
return setTo(s, mask, Stream::Null());
}
inline
void GpuMat::convertTo(OutputArray dst, int rtype) const
{
convertTo(dst, rtype, Stream::Null());
}
inline
void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, double beta) const
{
convertTo(dst, rtype, alpha, beta, Stream::Null());
}
inline
void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const
{
convertTo(dst, rtype, alpha, 0.0, stream);
}
inline
void GpuMat::assignTo(GpuMat& m, int _type) const
{
if (_type < 0)
m = *this;
else
convertTo(m, _type);
}
inline
uchar* GpuMat::ptr(int y)
{
CV_DbgAssert( (unsigned)y < (unsigned)rows );
return data + step * y;
}
inline
const uchar* GpuMat::ptr(int y) const
{
CV_DbgAssert( (unsigned)y < (unsigned)rows );
return data + step * y;
}
template<typename _Tp> inline
_Tp* GpuMat::ptr(int y)
{
return (_Tp*)ptr(y);
}
template<typename _Tp> inline
const _Tp* GpuMat::ptr(int y) const
{
return (const _Tp*)ptr(y);
}
template <class T> inline
GpuMat::operator PtrStepSz<T>() const
{
return PtrStepSz<T>(rows, cols, (T*)data, step);
}
template <class T> inline
GpuMat::operator PtrStep<T>() const
{
return PtrStep<T>((T*)data, step);
}
inline
GpuMat GpuMat::row(int y) const
{
return GpuMat(*this, Range(y, y+1), Range::all());
}
inline
GpuMat GpuMat::col(int x) const
{
return GpuMat(*this, Range::all(), Range(x, x+1));
}
inline
GpuMat GpuMat::rowRange(int startrow, int endrow) const
{
return GpuMat(*this, Range(startrow, endrow), Range::all());
}
inline
GpuMat GpuMat::rowRange(Range r) const
{
return GpuMat(*this, r, Range::all());
}
inline
GpuMat GpuMat::colRange(int startcol, int endcol) const
{
return GpuMat(*this, Range::all(), Range(startcol, endcol));
}
inline
GpuMat GpuMat::colRange(Range r) const
{
return GpuMat(*this, Range::all(), r);
}
inline
GpuMat GpuMat::operator ()(Range rowRange_, Range colRange_) const
{
return GpuMat(*this, rowRange_, colRange_);
}
inline
GpuMat GpuMat::operator ()(Rect roi) const
{
return GpuMat(*this, roi);
}
inline
bool GpuMat::isContinuous() const
{
return (flags & Mat::CONTINUOUS_FLAG) != 0;
}
inline
size_t GpuMat::elemSize() const
{
return CV_ELEM_SIZE(flags);
}
inline
size_t GpuMat::elemSize1() const
{
return CV_ELEM_SIZE1(flags);
}
inline
int GpuMat::type() const
{
return CV_MAT_TYPE(flags);
}
inline
int GpuMat::depth() const
{
return CV_MAT_DEPTH(flags);
}
inline
int GpuMat::channels() const
{
return CV_MAT_CN(flags);
}
inline
size_t GpuMat::step1() const
{
return step / elemSize1();
}
inline
Size GpuMat::size() const
{
return Size(cols, rows);
}
inline
bool GpuMat::empty() const
{
return data == 0;
}
inline
void* GpuMat::cudaPtr() const
{
return data;
}
static inline
GpuMat createContinuous(int rows, int cols, int type)
{
GpuMat m;
createContinuous(rows, cols, type, m);
return m;
}
static inline
void createContinuous(Size size, int type, OutputArray arr)
{
createContinuous(size.height, size.width, type, arr);
}
static inline
GpuMat createContinuous(Size size, int type)
{
GpuMat m;
createContinuous(size, type, m);
return m;
}
static inline
void ensureSizeIsEnough(Size size, int type, OutputArray arr)
{
ensureSizeIsEnough(size.height, size.width, type, arr);
}
static inline
void swap(GpuMat& a, GpuMat& b)
{
a.swap(b);
}
//===================================================================================
// GpuMatND
//===================================================================================
inline
GpuMatND::GpuMatND() :
flags(0), dims(0), data(nullptr), offset(0)
{
}
inline
GpuMatND::GpuMatND(SizeArray _size, int _type) :
flags(0), dims(0), data(nullptr), offset(0)
{
create(std::move(_size), _type);
}
inline
void GpuMatND::swap(GpuMatND& m) noexcept
{
std::swap(*this, m);
}
inline
bool GpuMatND::isContinuous() const
{
return (flags & Mat::CONTINUOUS_FLAG) != 0;
}
inline
bool GpuMatND::isSubmatrix() const
{
return (flags & Mat::SUBMATRIX_FLAG) != 0;
}
inline
size_t GpuMatND::elemSize() const
{
return CV_ELEM_SIZE(flags);
}
inline
size_t GpuMatND::elemSize1() const
{
return CV_ELEM_SIZE1(flags);
}
inline
bool GpuMatND::empty() const
{
return data == nullptr;
}
inline
bool GpuMatND::external() const
{
return !empty() && data_.use_count() == 0;
}
inline
uchar* GpuMatND::getDevicePtr() const
{
return data + offset;
}
inline
size_t GpuMatND::total() const
{
size_t p = 1;
for(auto s : size)
p *= s;
return p;
}
inline
size_t GpuMatND::totalMemSize() const
{
return size[0] * step[0];
}
inline
int GpuMatND::type() const
{
return CV_MAT_TYPE(flags);
}
//===================================================================================
// HostMem
//===================================================================================
inline
HostMem::HostMem(AllocType alloc_type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
}
inline
HostMem::HostMem(const HostMem& m)
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type)
{
if( refcount )
CV_XADD(refcount, 1);
}
inline
HostMem::HostMem(int rows_, int cols_, int type_, AllocType alloc_type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
if (rows_ > 0 && cols_ > 0)
create(rows_, cols_, type_);
}
inline
HostMem::HostMem(Size size_, int type_, AllocType alloc_type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
if (size_.height > 0 && size_.width > 0)
create(size_.height, size_.width, type_);
}
inline
HostMem::HostMem(InputArray arr, AllocType alloc_type_)
: flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_)
{
arr.getMat().copyTo(*this);
}
inline
HostMem::~HostMem()
{
release();
}
inline
HostMem& HostMem::operator =(const HostMem& m)
{
if (this != &m)
{
HostMem temp(m);
swap(temp);
}
return *this;
}
inline
void HostMem::swap(HostMem& b)
{
std::swap(flags, b.flags);
std::swap(rows, b.rows);
std::swap(cols, b.cols);
std::swap(step, b.step);
std::swap(data, b.data);
std::swap(datastart, b.datastart);
std::swap(dataend, b.dataend);
std::swap(refcount, b.refcount);
std::swap(alloc_type, b.alloc_type);
}
inline
HostMem HostMem::clone() const
{
HostMem m(size(), type(), alloc_type);
createMatHeader().copyTo(m);
return m;
}
inline
void HostMem::create(Size size_, int type_)
{
create(size_.height, size_.width, type_);
}
inline
Mat HostMem::createMatHeader() const
{
return Mat(size(), type(), data, step);
}
inline
bool HostMem::isContinuous() const
{
return (flags & Mat::CONTINUOUS_FLAG) != 0;
}
inline
size_t HostMem::elemSize() const
{
return CV_ELEM_SIZE(flags);
}
inline
size_t HostMem::elemSize1() const
{
return CV_ELEM_SIZE1(flags);
}
inline
int HostMem::type() const
{
return CV_MAT_TYPE(flags);
}
inline
int HostMem::depth() const
{
return CV_MAT_DEPTH(flags);
}
inline
int HostMem::channels() const
{
return CV_MAT_CN(flags);
}
inline
size_t HostMem::step1() const
{
return step / elemSize1();
}
inline
Size HostMem::size() const
{
return Size(cols, rows);
}
inline
bool HostMem::empty() const
{
return data == 0;
}
static inline
void swap(HostMem& a, HostMem& b)
{
a.swap(b);
}
//===================================================================================
// Stream
//===================================================================================
inline
Stream::Stream(const Ptr<Impl>& impl)
: impl_(impl)
{
}
//===================================================================================
// Event
//===================================================================================
inline
Event::Event(const Ptr<Impl>& impl)
: impl_(impl)
{
}
//===================================================================================
// Initialization & Info
//===================================================================================
inline
bool TargetArchs::has(int major, int minor)
{
return hasPtx(major, minor) || hasBin(major, minor);
}
inline
bool TargetArchs::hasEqualOrGreater(int major, int minor)
{
return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor);
}
inline
DeviceInfo::DeviceInfo()
{
device_id_ = getDevice();
}
inline
DeviceInfo::DeviceInfo(int device_id)
{
CV_Assert( device_id >= 0 && device_id < getCudaEnabledDeviceCount() );
device_id_ = device_id;
}
inline
int DeviceInfo::deviceID() const
{
return device_id_;
}
inline
size_t DeviceInfo::freeMemory() const
{
size_t _totalMemory = 0, _freeMemory = 0;
queryMemory(_totalMemory, _freeMemory);
return _freeMemory;
}
inline
size_t DeviceInfo::totalMemory() const
{
size_t _totalMemory = 0, _freeMemory = 0;
queryMemory(_totalMemory, _freeMemory);
return _totalMemory;
}
inline
bool DeviceInfo::supports(FeatureSet feature_set) const
{
int version = majorVersion() * 10 + minorVersion();
return version >= feature_set;
}
}} // namespace cv { namespace cuda {
//===================================================================================
// Mat
//===================================================================================
namespace cv {
inline
Mat::Mat(const cuda::GpuMat& m)
: flags(0), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows)
{
m.download(*this);
}
}
//! @endcond
#endif // OPENCV_CORE_CUDAINL_HPP

View File

@@ -0,0 +1,211 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_DEVICE_BLOCK_HPP
#define OPENCV_CUDA_DEVICE_BLOCK_HPP
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
struct Block
{
static __device__ __forceinline__ unsigned int id()
{
return blockIdx.x;
}
static __device__ __forceinline__ unsigned int stride()
{
return blockDim.x * blockDim.y * blockDim.z;
}
static __device__ __forceinline__ void sync()
{
__syncthreads();
}
static __device__ __forceinline__ int flattenedThreadId()
{
return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x;
}
template<typename It, typename T>
static __device__ __forceinline__ void fill(It beg, It end, const T& value)
{
int STRIDE = stride();
It t = beg + flattenedThreadId();
for(; t < end; t += STRIDE)
*t = value;
}
template<typename OutIt, typename T>
static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value)
{
int STRIDE = stride();
int tid = flattenedThreadId();
value += tid;
for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE)
*t = value;
}
template<typename InIt, typename OutIt>
static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out)
{
int STRIDE = stride();
InIt t = beg + flattenedThreadId();
OutIt o = out + (t - beg);
for(; t < end; t += STRIDE, o += STRIDE)
*o = *t;
}
template<typename InIt, typename OutIt, class UnOp>
static __device__ __forceinline__ void transform(InIt beg, InIt end, OutIt out, UnOp op)
{
int STRIDE = stride();
InIt t = beg + flattenedThreadId();
OutIt o = out + (t - beg);
for(; t < end; t += STRIDE, o += STRIDE)
*o = op(*t);
}
template<typename InIt1, typename InIt2, typename OutIt, class BinOp>
static __device__ __forceinline__ void transform(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op)
{
int STRIDE = stride();
InIt1 t1 = beg1 + flattenedThreadId();
InIt2 t2 = beg2 + flattenedThreadId();
OutIt o = out + (t1 - beg1);
for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE)
*o = op(*t1, *t2);
}
template<int CTA_SIZE, typename T, class BinOp>
static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op)
{
int tid = flattenedThreadId();
T val = buffer[tid];
if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
if (tid < 32)
{
if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
}
}
template<int CTA_SIZE, typename T, class BinOp>
static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op)
{
int tid = flattenedThreadId();
T val = buffer[tid] = init;
__syncthreads();
if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); }
if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); }
if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); }
if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); }
if (tid < 32)
{
if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); }
if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); }
if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); }
if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); }
if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); }
if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); }
}
__syncthreads();
return buffer[0];
}
template <typename T, class BinOp>
static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op)
{
int ftid = flattenedThreadId();
int sft = stride();
if (sft < n)
{
for (unsigned int i = sft + ftid; i < n; i += sft)
data[ftid] = op(data[ftid], data[i]);
__syncthreads();
n = sft;
}
while (n > 1)
{
unsigned int half = n/2;
if (ftid < half)
data[ftid] = op(data[ftid], data[n - ftid - 1]);
__syncthreads();
n = n - half;
}
}
};
}}}
//! @endcond
#endif /* OPENCV_CUDA_DEVICE_BLOCK_HPP */

View File

@@ -0,0 +1,722 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_BORDER_INTERPOLATE_HPP
#define OPENCV_CUDA_BORDER_INTERPOLATE_HPP
#include "saturate_cast.hpp"
#include "vec_traits.hpp"
#include "vec_math.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
//////////////////////////////////////////////////////////////
// BrdConstant
template <typename D> struct BrdRowConstant
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdRowConstant(int width_, const D& val_ = VecTraits<D>::all(0)) : width(width_), val(val_) {}
template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
{
return x >= 0 ? saturate_cast<D>(data[x]) : val;
}
template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
{
return x < width ? saturate_cast<D>(data[x]) : val;
}
template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
{
return (x >= 0 && x < width) ? saturate_cast<D>(data[x]) : val;
}
int width;
D val;
};
template <typename D> struct BrdColConstant
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdColConstant(int height_, const D& val_ = VecTraits<D>::all(0)) : height(height_), val(val_) {}
template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
{
return y >= 0 ? saturate_cast<D>(*(const T*)((const char*)data + y * step)) : val;
}
template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
{
return y < height ? saturate_cast<D>(*(const T*)((const char*)data + y * step)) : val;
}
template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
{
return (y >= 0 && y < height) ? saturate_cast<D>(*(const T*)((const char*)data + y * step)) : val;
}
int height;
D val;
};
template <typename D> struct BrdConstant
{
typedef D result_type;
__host__ __device__ __forceinline__ BrdConstant(int height_, int width_, const D& val_ = VecTraits<D>::all(0)) : height(height_), width(width_), val(val_)
{
}
template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
{
return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast<D>(((const T*)((const uchar*)data + y * step))[x]) : val;
}
template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
{
return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast<D>(src(y, x)) : val;
}
int height;
int width;
D val;
};
//////////////////////////////////////////////////////////////
// BrdReplicate
template <typename D> struct BrdRowReplicate
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdRowReplicate(int width) : last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdRowReplicate(int width, U) : last_col(width - 1) {}
__device__ __forceinline__ int idx_col_low(int x) const
{
return ::max(x, 0);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return ::min(x, last_col);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_low(idx_col_high(x));
}
template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_low(x)]);
}
template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_high(x)]);
}
template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col(x)]);
}
int last_col;
};
template <typename D> struct BrdColReplicate
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdColReplicate(int height) : last_row(height - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdColReplicate(int height, U) : last_row(height - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return ::max(y, 0);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return ::min(y, last_row);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_low(idx_row_high(y));
}
template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const T*)((const char*)data + idx_row_low(y) * step));
}
template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const T*)((const char*)data + idx_row_high(y) * step));
}
template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const T*)((const char*)data + idx_row(y) * step));
}
int last_row;
};
template <typename D> struct BrdReplicate
{
typedef D result_type;
__host__ __device__ __forceinline__ BrdReplicate(int height, int width) : last_row(height - 1), last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdReplicate(int height, int width, U) : last_row(height - 1), last_col(width - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return ::max(y, 0);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return ::min(y, last_row);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_low(idx_row_high(y));
}
__device__ __forceinline__ int idx_col_low(int x) const
{
return ::max(x, 0);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return ::min(x, last_col);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_low(idx_col_high(x));
}
template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
{
return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
}
template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
{
return saturate_cast<D>(src(idx_row(y), idx_col(x)));
}
int last_row;
int last_col;
};
//////////////////////////////////////////////////////////////
// BrdReflect101
template <typename D> struct BrdRowReflect101
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdRowReflect101(int width) : last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdRowReflect101(int width, U) : last_col(width - 1) {}
__device__ __forceinline__ int idx_col_low(int x) const
{
return ::abs(x) % (last_col + 1);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return ::abs(last_col - ::abs(last_col - x)) % (last_col + 1);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_low(idx_col_high(x));
}
template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_low(x)]);
}
template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_high(x)]);
}
template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col(x)]);
}
int last_col;
};
template <typename D> struct BrdColReflect101
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdColReflect101(int height) : last_row(height - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdColReflect101(int height, U) : last_row(height - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return ::abs(y) % (last_row + 1);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return ::abs(last_row - ::abs(last_row - y)) % (last_row + 1);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_low(idx_row_high(y));
}
template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_low(y) * step));
}
template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_high(y) * step));
}
template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row(y) * step));
}
int last_row;
};
template <typename D> struct BrdReflect101
{
typedef D result_type;
__host__ __device__ __forceinline__ BrdReflect101(int height, int width) : last_row(height - 1), last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdReflect101(int height, int width, U) : last_row(height - 1), last_col(width - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return ::abs(y) % (last_row + 1);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return ::abs(last_row - ::abs(last_row - y)) % (last_row + 1);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_low(idx_row_high(y));
}
__device__ __forceinline__ int idx_col_low(int x) const
{
return ::abs(x) % (last_col + 1);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return ::abs(last_col - ::abs(last_col - x)) % (last_col + 1);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_low(idx_col_high(x));
}
template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
{
return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
}
template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
{
return saturate_cast<D>(src(idx_row(y), idx_col(x)));
}
int last_row;
int last_col;
};
//////////////////////////////////////////////////////////////
// BrdReflect
template <typename D> struct BrdRowReflect
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdRowReflect(int width) : last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdRowReflect(int width, U) : last_col(width - 1) {}
__device__ __forceinline__ int idx_col_low(int x) const
{
return (::abs(x) - (x < 0)) % (last_col + 1);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return ::abs(last_col - ::abs(last_col - x) + (x > last_col)) % (last_col + 1);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_high(::abs(x) - (x < 0));
}
template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_low(x)]);
}
template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_high(x)]);
}
template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col(x)]);
}
int last_col;
};
template <typename D> struct BrdColReflect
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdColReflect(int height) : last_row(height - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdColReflect(int height, U) : last_row(height - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return (::abs(y) - (y < 0)) % (last_row + 1);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return ::abs(last_row - ::abs(last_row - y) + (y > last_row)) % (last_row + 1);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_high(::abs(y) - (y < 0));
}
template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_low(y) * step));
}
template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_high(y) * step));
}
template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row(y) * step));
}
int last_row;
};
template <typename D> struct BrdReflect
{
typedef D result_type;
__host__ __device__ __forceinline__ BrdReflect(int height, int width) : last_row(height - 1), last_col(width - 1) {}
template <typename U> __host__ __device__ __forceinline__ BrdReflect(int height, int width, U) : last_row(height - 1), last_col(width - 1) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return (::abs(y) - (y < 0)) % (last_row + 1);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return /*::abs*/(last_row - ::abs(last_row - y) + (y > last_row)) /*% (last_row + 1)*/;
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_low(idx_row_high(y));
}
__device__ __forceinline__ int idx_col_low(int x) const
{
return (::abs(x) - (x < 0)) % (last_col + 1);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return (last_col - ::abs(last_col - x) + (x > last_col));
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_low(idx_col_high(x));
}
template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
{
return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
}
template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
{
return saturate_cast<D>(src(idx_row(y), idx_col(x)));
}
int last_row;
int last_col;
};
//////////////////////////////////////////////////////////////
// BrdWrap
template <typename D> struct BrdRowWrap
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdRowWrap(int width_) : width(width_) {}
template <typename U> __host__ __device__ __forceinline__ BrdRowWrap(int width_, U) : width(width_) {}
__device__ __forceinline__ int idx_col_low(int x) const
{
return (x >= 0) * x + (x < 0) * (x - ((x - width + 1) / width) * width);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return (x < width) * x + (x >= width) * (x % width);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_high(idx_col_low(x));
}
template <typename T> __device__ __forceinline__ D at_low(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_low(x)]);
}
template <typename T> __device__ __forceinline__ D at_high(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col_high(x)]);
}
template <typename T> __device__ __forceinline__ D at(int x, const T* data) const
{
return saturate_cast<D>(data[idx_col(x)]);
}
int width;
};
template <typename D> struct BrdColWrap
{
typedef D result_type;
explicit __host__ __device__ __forceinline__ BrdColWrap(int height_) : height(height_) {}
template <typename U> __host__ __device__ __forceinline__ BrdColWrap(int height_, U) : height(height_) {}
__device__ __forceinline__ int idx_row_low(int y) const
{
return (y >= 0) * y + (y < 0) * (y - ((y - height + 1) / height) * height);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return (y < height) * y + (y >= height) * (y % height);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_high(idx_row_low(y));
}
template <typename T> __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_low(y) * step));
}
template <typename T> __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row_high(y) * step));
}
template <typename T> __device__ __forceinline__ D at(int y, const T* data, size_t step) const
{
return saturate_cast<D>(*(const D*)((const char*)data + idx_row(y) * step));
}
int height;
};
template <typename D> struct BrdWrap
{
typedef D result_type;
__host__ __device__ __forceinline__ BrdWrap(int height_, int width_) :
height(height_), width(width_)
{
}
template <typename U>
__host__ __device__ __forceinline__ BrdWrap(int height_, int width_, U) :
height(height_), width(width_)
{
}
__device__ __forceinline__ int idx_row_low(int y) const
{
return (y >= 0) ? y : (y - ((y - height + 1) / height) * height);
}
__device__ __forceinline__ int idx_row_high(int y) const
{
return (y < height) ? y : (y % height);
}
__device__ __forceinline__ int idx_row(int y) const
{
return idx_row_high(idx_row_low(y));
}
__device__ __forceinline__ int idx_col_low(int x) const
{
return (x >= 0) ? x : (x - ((x - width + 1) / width) * width);
}
__device__ __forceinline__ int idx_col_high(int x) const
{
return (x < width) ? x : (x % width);
}
__device__ __forceinline__ int idx_col(int x) const
{
return idx_col_high(idx_col_low(x));
}
template <typename T> __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const
{
return saturate_cast<D>(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]);
}
template <typename Ptr2D> __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const
{
return saturate_cast<D>(src(idx_row(y), idx_col(x)));
}
int height;
int width;
};
//////////////////////////////////////////////////////////////
// BorderReader
template <typename Ptr2D, typename B> struct BorderReader
{
typedef typename B::result_type elem_type;
typedef typename Ptr2D::index_type index_type;
__host__ __device__ __forceinline__ BorderReader(const Ptr2D& ptr_, const B& b_) : ptr(ptr_), b(b_) {}
__device__ __forceinline__ elem_type operator ()(index_type y, index_type x) const
{
return b.at(y, x, ptr);
}
Ptr2D ptr;
B b;
};
// under win32 there is some bug with templated types that passed as kernel parameters
// with this specialization all works fine
template <typename Ptr2D, typename D> struct BorderReader< Ptr2D, BrdConstant<D> >
{
typedef typename BrdConstant<D>::result_type elem_type;
typedef typename Ptr2D::index_type index_type;
__host__ __device__ __forceinline__ BorderReader(const Ptr2D& src_, const BrdConstant<D>& b) :
src(src_), height(b.height), width(b.width), val(b.val)
{
}
__device__ __forceinline__ D operator ()(index_type y, index_type x) const
{
return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast<D>(src(y, x)) : val;
}
Ptr2D src;
int height;
int width;
D val;
};
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // OPENCV_CUDA_BORDER_INTERPOLATE_HPP

View File

@@ -0,0 +1,309 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_COLOR_HPP
#define OPENCV_CUDA_COLOR_HPP
#include "detail/color_detail.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
// All OPENCV_CUDA_IMPLEMENT_*_TRAITS(ColorSpace1_to_ColorSpace2, ...) macros implements
// template <typename T> class ColorSpace1_to_ColorSpace2_traits
// {
// typedef ... functor_type;
// static __host__ __device__ functor_type create_functor();
// };
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_rgba, 4, 4, 2)
#undef OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgr_to_bgr555, 3, 0, 5)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgr_to_bgr565, 3, 0, 6)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgb_to_bgr555, 3, 2, 5)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgb_to_bgr565, 3, 2, 6)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgra_to_bgr555, 4, 0, 5)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgra_to_bgr565, 4, 0, 6)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgba_to_bgr555, 4, 2, 5)
OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgba_to_bgr565, 4, 2, 6)
#undef OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_rgb, 3, 2, 5)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_rgb, 3, 2, 6)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_bgr, 3, 0, 5)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_bgr, 3, 0, 6)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_rgba, 4, 2, 5)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_rgba, 4, 2, 6)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_bgra, 4, 0, 5)
OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_bgra, 4, 0, 6)
#undef OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS(gray_to_bgr, 3)
OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS(gray_to_bgra, 4)
#undef OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS(gray_to_bgr555, 5)
OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS(gray_to_bgr565, 6)
#undef OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS(bgr555_to_gray, 5)
OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS(bgr565_to_gray, 6)
#undef OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(rgb_to_gray, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(bgr_to_gray, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(rgba_to_gray, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(bgra_to_gray, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgb_to_yuv, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgba_to_yuv, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgb_to_yuv4, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgba_to_yuv4, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgr_to_yuv, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgra_to_yuv, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgr_to_yuv4, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgra_to_yuv4, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_rgba, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_bgr, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_bgra, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgb_to_YCrCb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgba_to_YCrCb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgb_to_YCrCb4, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgba_to_YCrCb4, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgr_to_YCrCb, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgra_to_YCrCb, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgr_to_YCrCb4, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgra_to_YCrCb4, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_rgba, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_bgr, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_bgra, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgb_to_xyz, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgba_to_xyz, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgb_to_xyz4, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgba_to_xyz4, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgr_to_xyz, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgra_to_xyz, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgr_to_xyz4, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgra_to_xyz4, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_rgba, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_bgr, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_bgra, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgb_to_hsv, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgba_to_hsv, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgb_to_hsv4, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgba_to_hsv4, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgr_to_hsv, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgra_to_hsv, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgr_to_hsv4, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgra_to_hsv4, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_rgba, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_bgr, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_bgra, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgb_to_hls, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgba_to_hls, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgb_to_hls4, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgba_to_hls4, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgr_to_hls, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgra_to_hls, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgr_to_hls4, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgra_to_hls4, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_rgb, 3, 3, 2)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_rgba, 3, 4, 2)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_rgb, 4, 3, 2)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_rgba, 4, 4, 2)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_bgr, 3, 3, 0)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_bgra, 3, 4, 0)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_bgr, 4, 3, 0)
OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_bgra, 4, 4, 0)
#undef OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgb_to_lab, 3, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgba_to_lab, 4, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgb_to_lab4, 3, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgba_to_lab4, 4, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgr_to_lab, 3, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgra_to_lab, 4, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgr_to_lab4, 3, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgra_to_lab4, 4, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgb_to_lab, 3, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgba_to_lab, 4, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgb_to_lab4, 3, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgba_to_lab4, 4, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgr_to_lab, 3, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgra_to_lab, 4, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgr_to_lab4, 3, 4, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgra_to_lab4, 4, 4, false, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_rgb, 3, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_rgb, 4, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_rgba, 3, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_rgba, 4, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_bgr, 3, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_bgr, 4, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_bgra, 3, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_bgra, 4, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lrgb, 3, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lrgb, 4, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lrgba, 3, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lrgba, 4, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lbgr, 3, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lbgr, 4, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lbgra, 3, 4, false, 0)
OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lbgra, 4, 4, false, 0)
#undef OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgb_to_luv, 3, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgba_to_luv, 4, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgb_to_luv4, 3, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgba_to_luv4, 4, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgr_to_luv, 3, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgra_to_luv, 4, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgr_to_luv4, 3, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgra_to_luv4, 4, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgb_to_luv, 3, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgba_to_luv, 4, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgb_to_luv4, 3, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgba_to_luv4, 4, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgr_to_luv, 3, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgra_to_luv, 4, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgr_to_luv4, 3, 4, false, 0)
OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgra_to_luv4, 4, 4, false, 0)
#undef OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_rgb, 3, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_rgb, 4, 3, true, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_rgba, 3, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_rgba, 4, 4, true, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_bgr, 3, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_bgr, 4, 3, true, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_bgra, 3, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_bgra, 4, 4, true, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lrgb, 3, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lrgb, 4, 3, false, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lrgba, 3, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lrgba, 4, 4, false, 2)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lbgr, 3, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lbgr, 4, 3, false, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lbgra, 3, 4, false, 0)
OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lbgra, 4, 4, false, 0)
#undef OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // OPENCV_CUDA_COLOR_HPP

View File

@@ -0,0 +1,123 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_COMMON_HPP
#define OPENCV_CUDA_COMMON_HPP
#include <cuda_runtime.h>
#include "opencv2/core/cuda_types.hpp"
#include "opencv2/core/cvdef.h"
#include "opencv2/core/base.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
#ifndef CV_PI_F
#ifndef CV_PI
#define CV_PI_F 3.14159265f
#else
#define CV_PI_F ((float)CV_PI)
#endif
#endif
namespace cv { namespace cuda {
static inline void checkCudaError(cudaError_t err, const char* file, const int line, const char* func)
{
if (cudaSuccess != err)
cv::error(cv::Error::GpuApiCallError, cudaGetErrorString(err), func, file, line);
}
}}
#ifndef cudaSafeCall
#define cudaSafeCall(expr) cv::cuda::checkCudaError(expr, __FILE__, __LINE__, CV_Func)
#endif
namespace cv { namespace cuda
{
template <typename T> static inline bool isAligned(const T* ptr, size_t size)
{
return reinterpret_cast<size_t>(ptr) % size == 0;
}
static inline bool isAligned(size_t step, size_t size)
{
return step % size == 0;
}
}}
namespace cv { namespace cuda
{
namespace device
{
__host__ __device__ __forceinline__ int divUp(int total, int grain)
{
return (total + grain - 1) / grain;
}
template<class T> inline void bindTexture(const textureReference* tex, const PtrStepSz<T>& img)
{
cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) );
}
template<class T> inline void createTextureObjectPitch2D(cudaTextureObject_t* tex, PtrStepSz<T>& img, const cudaTextureDesc& texDesc)
{
cudaResourceDesc resDesc;
memset(&resDesc, 0, sizeof(resDesc));
resDesc.resType = cudaResourceTypePitch2D;
resDesc.res.pitch2D.devPtr = static_cast<void*>(img.ptr());
resDesc.res.pitch2D.height = img.rows;
resDesc.res.pitch2D.width = img.cols;
resDesc.res.pitch2D.pitchInBytes = img.step;
resDesc.res.pitch2D.desc = cudaCreateChannelDesc<T>();
cudaSafeCall( cudaCreateTextureObject(tex, &resDesc, &texDesc, NULL) );
}
}
}}
//! @endcond
#endif // OPENCV_CUDA_COMMON_HPP

View File

@@ -0,0 +1,113 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_DATAMOV_UTILS_HPP
#define OPENCV_CUDA_DATAMOV_UTILS_HPP
#include "common.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 200
// for Fermi memory space is detected automatically
template <typename T> struct ForceGlob
{
__device__ __forceinline__ static void Load(const T* ptr, int offset, T& val) { val = ptr[offset]; }
};
#else // __CUDA_ARCH__ >= 200
#if defined(_WIN64) || defined(__LP64__)
// 64-bit register modifier for inlined asm
#define OPENCV_CUDA_ASM_PTR "l"
#else
// 32-bit register modifier for inlined asm
#define OPENCV_CUDA_ASM_PTR "r"
#endif
template<class T> struct ForceGlob;
#define OPENCV_CUDA_DEFINE_FORCE_GLOB(base_type, ptx_type, reg_mod) \
template <> struct ForceGlob<base_type> \
{ \
__device__ __forceinline__ static void Load(const base_type* ptr, int offset, base_type& val) \
{ \
asm("ld.global."#ptx_type" %0, [%1];" : "="#reg_mod(val) : OPENCV_CUDA_ASM_PTR(ptr + offset)); \
} \
};
#define OPENCV_CUDA_DEFINE_FORCE_GLOB_B(base_type, ptx_type) \
template <> struct ForceGlob<base_type> \
{ \
__device__ __forceinline__ static void Load(const base_type* ptr, int offset, base_type& val) \
{ \
asm("ld.global."#ptx_type" %0, [%1];" : "=r"(*reinterpret_cast<uint*>(&val)) : OPENCV_CUDA_ASM_PTR(ptr + offset)); \
} \
};
OPENCV_CUDA_DEFINE_FORCE_GLOB_B(uchar, u8)
OPENCV_CUDA_DEFINE_FORCE_GLOB_B(schar, s8)
OPENCV_CUDA_DEFINE_FORCE_GLOB_B(char, b8)
OPENCV_CUDA_DEFINE_FORCE_GLOB (ushort, u16, h)
OPENCV_CUDA_DEFINE_FORCE_GLOB (short, s16, h)
OPENCV_CUDA_DEFINE_FORCE_GLOB (uint, u32, r)
OPENCV_CUDA_DEFINE_FORCE_GLOB (int, s32, r)
OPENCV_CUDA_DEFINE_FORCE_GLOB (float, f32, f)
OPENCV_CUDA_DEFINE_FORCE_GLOB (double, f64, d)
#undef OPENCV_CUDA_DEFINE_FORCE_GLOB
#undef OPENCV_CUDA_DEFINE_FORCE_GLOB_B
#undef OPENCV_CUDA_ASM_PTR
#endif // __CUDA_ARCH__ >= 200
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // OPENCV_CUDA_DATAMOV_UTILS_HPP

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,365 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_REDUCE_DETAIL_HPP
#define OPENCV_CUDA_REDUCE_DETAIL_HPP
#include <thrust/tuple.h>
#include "../warp.hpp"
#include "../warp_shuffle.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace reduce_detail
{
template <typename T> struct GetType;
template <typename T> struct GetType<T*>
{
typedef T type;
};
template <typename T> struct GetType<volatile T*>
{
typedef T type;
};
template <typename T> struct GetType<T&>
{
typedef T type;
};
template <unsigned int I, unsigned int N>
struct For
{
template <class PointerTuple, class ValTuple>
static __device__ void loadToSmem(const PointerTuple& smem, const ValTuple& val, unsigned int tid)
{
thrust::get<I>(smem)[tid] = thrust::get<I>(val);
For<I + 1, N>::loadToSmem(smem, val, tid);
}
template <class PointerTuple, class ValTuple>
static __device__ void loadFromSmem(const PointerTuple& smem, const ValTuple& val, unsigned int tid)
{
thrust::get<I>(val) = thrust::get<I>(smem)[tid];
For<I + 1, N>::loadFromSmem(smem, val, tid);
}
template <class PointerTuple, class ValTuple, class OpTuple>
static __device__ void merge(const PointerTuple& smem, const ValTuple& val, unsigned int tid, unsigned int delta, const OpTuple& op)
{
typename GetType<typename thrust::tuple_element<I, PointerTuple>::type>::type reg = thrust::get<I>(smem)[tid + delta];
thrust::get<I>(smem)[tid] = thrust::get<I>(val) = thrust::get<I>(op)(thrust::get<I>(val), reg);
For<I + 1, N>::merge(smem, val, tid, delta, op);
}
template <class ValTuple, class OpTuple>
static __device__ void mergeShfl(const ValTuple& val, unsigned int delta, unsigned int width, const OpTuple& op)
{
typename GetType<typename thrust::tuple_element<I, ValTuple>::type>::type reg = shfl_down(thrust::get<I>(val), delta, width);
thrust::get<I>(val) = thrust::get<I>(op)(thrust::get<I>(val), reg);
For<I + 1, N>::mergeShfl(val, delta, width, op);
}
};
template <unsigned int N>
struct For<N, N>
{
template <class PointerTuple, class ValTuple>
static __device__ void loadToSmem(const PointerTuple&, const ValTuple&, unsigned int)
{
}
template <class PointerTuple, class ValTuple>
static __device__ void loadFromSmem(const PointerTuple&, const ValTuple&, unsigned int)
{
}
template <class PointerTuple, class ValTuple, class OpTuple>
static __device__ void merge(const PointerTuple&, const ValTuple&, unsigned int, unsigned int, const OpTuple&)
{
}
template <class ValTuple, class OpTuple>
static __device__ void mergeShfl(const ValTuple&, unsigned int, unsigned int, const OpTuple&)
{
}
};
template <typename T>
__device__ __forceinline__ void loadToSmem(volatile T* smem, T& val, unsigned int tid)
{
smem[tid] = val;
}
template <typename T>
__device__ __forceinline__ void loadFromSmem(volatile T* smem, T& val, unsigned int tid)
{
val = smem[tid];
}
template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9>
__device__ __forceinline__ void loadToSmem(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::loadToSmem(smem, val, tid);
}
template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9>
__device__ __forceinline__ void loadFromSmem(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::loadFromSmem(smem, val, tid);
}
template <typename T, class Op>
__device__ __forceinline__ void merge(volatile T* smem, T& val, unsigned int tid, unsigned int delta, const Op& op)
{
T reg = smem[tid + delta];
smem[tid] = val = op(val, reg);
}
template <typename T, class Op>
__device__ __forceinline__ void mergeShfl(T& val, unsigned int delta, unsigned int width, const Op& op)
{
T reg = shfl_down(val, delta, width);
val = op(val, reg);
}
template <typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
__device__ __forceinline__ void merge(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid,
unsigned int delta,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
{
For<0, thrust::tuple_size<thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9> >::value>::merge(smem, val, tid, delta, op);
}
template <typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
__device__ __forceinline__ void mergeShfl(const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int delta,
unsigned int width,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
{
For<0, thrust::tuple_size<thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9> >::value>::mergeShfl(val, delta, width, op);
}
template <unsigned int N> struct Generic
{
template <typename Pointer, typename Reference, class Op>
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
loadToSmem(smem, val, tid);
if (N >= 32)
__syncthreads();
if (N >= 2048)
{
if (tid < 1024)
merge(smem, val, tid, 1024, op);
__syncthreads();
}
if (N >= 1024)
{
if (tid < 512)
merge(smem, val, tid, 512, op);
__syncthreads();
}
if (N >= 512)
{
if (tid < 256)
merge(smem, val, tid, 256, op);
__syncthreads();
}
if (N >= 256)
{
if (tid < 128)
merge(smem, val, tid, 128, op);
__syncthreads();
}
if (N >= 128)
{
if (tid < 64)
merge(smem, val, tid, 64, op);
__syncthreads();
}
if (N >= 64)
{
if (tid < 32)
merge(smem, val, tid, 32, op);
}
if (tid < 16)
{
merge(smem, val, tid, 16, op);
merge(smem, val, tid, 8, op);
merge(smem, val, tid, 4, op);
merge(smem, val, tid, 2, op);
merge(smem, val, tid, 1, op);
}
}
};
template <unsigned int I, typename Pointer, typename Reference, class Op>
struct Unroll
{
static __device__ void loopShfl(Reference val, Op op, unsigned int N)
{
mergeShfl(val, I, N, op);
Unroll<I / 2, Pointer, Reference, Op>::loopShfl(val, op, N);
}
static __device__ void loop(Pointer smem, Reference val, unsigned int tid, Op op)
{
merge(smem, val, tid, I, op);
Unroll<I / 2, Pointer, Reference, Op>::loop(smem, val, tid, op);
}
};
template <typename Pointer, typename Reference, class Op>
struct Unroll<0, Pointer, Reference, Op>
{
static __device__ void loopShfl(Reference, Op, unsigned int)
{
}
static __device__ void loop(Pointer, Reference, unsigned int, Op)
{
}
};
template <unsigned int N> struct WarpOptimized
{
template <typename Pointer, typename Reference, class Op>
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300
CV_UNUSED(smem);
CV_UNUSED(tid);
Unroll<N / 2, Pointer, Reference, Op>::loopShfl(val, op, N);
#else
loadToSmem(smem, val, tid);
if (tid < N / 2)
Unroll<N / 2, Pointer, Reference, Op>::loop(smem, val, tid, op);
#endif
}
};
template <unsigned int N> struct GenericOptimized32
{
enum { M = N / 32 };
template <typename Pointer, typename Reference, class Op>
static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op)
{
const unsigned int laneId = Warp::laneId();
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300
Unroll<16, Pointer, Reference, Op>::loopShfl(val, op, warpSize);
if (laneId == 0)
loadToSmem(smem, val, tid / 32);
#else
loadToSmem(smem, val, tid);
if (laneId < 16)
Unroll<16, Pointer, Reference, Op>::loop(smem, val, tid, op);
__syncthreads();
if (laneId == 0)
loadToSmem(smem, val, tid / 32);
#endif
__syncthreads();
loadFromSmem(smem, val, tid);
if (tid < 32)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300
Unroll<M / 2, Pointer, Reference, Op>::loopShfl(val, op, M);
#else
Unroll<M / 2, Pointer, Reference, Op>::loop(smem, val, tid, op);
#endif
}
}
};
template <bool val, class T1, class T2> struct StaticIf;
template <class T1, class T2> struct StaticIf<true, T1, T2>
{
typedef T1 type;
};
template <class T1, class T2> struct StaticIf<false, T1, T2>
{
typedef T2 type;
};
template <unsigned int N> struct IsPowerOf2
{
enum { value = ((N != 0) && !(N & (N - 1))) };
};
template <unsigned int N> struct Dispatcher
{
typedef typename StaticIf<
(N <= 32) && IsPowerOf2<N>::value,
WarpOptimized<N>,
typename StaticIf<
(N <= 1024) && IsPowerOf2<N>::value,
GenericOptimized32<N>,
Generic<N>
>::type
>::type reductor;
};
}
}}}
//! @endcond
#endif // OPENCV_CUDA_REDUCE_DETAIL_HPP

View File

@@ -0,0 +1,502 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_PRED_VAL_REDUCE_DETAIL_HPP
#define OPENCV_CUDA_PRED_VAL_REDUCE_DETAIL_HPP
#include <thrust/tuple.h>
#include "../warp.hpp"
#include "../warp_shuffle.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace reduce_key_val_detail
{
template <typename T> struct GetType;
template <typename T> struct GetType<T*>
{
typedef T type;
};
template <typename T> struct GetType<volatile T*>
{
typedef T type;
};
template <typename T> struct GetType<T&>
{
typedef T type;
};
template <unsigned int I, unsigned int N>
struct For
{
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadToSmem(const PointerTuple& smem, const ReferenceTuple& data, unsigned int tid)
{
thrust::get<I>(smem)[tid] = thrust::get<I>(data);
For<I + 1, N>::loadToSmem(smem, data, tid);
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadFromSmem(const PointerTuple& smem, const ReferenceTuple& data, unsigned int tid)
{
thrust::get<I>(data) = thrust::get<I>(smem)[tid];
For<I + 1, N>::loadFromSmem(smem, data, tid);
}
template <class ReferenceTuple>
static __device__ void copyShfl(const ReferenceTuple& val, unsigned int delta, int width)
{
thrust::get<I>(val) = shfl_down(thrust::get<I>(val), delta, width);
For<I + 1, N>::copyShfl(val, delta, width);
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void copy(const PointerTuple& svals, const ReferenceTuple& val, unsigned int tid, unsigned int delta)
{
thrust::get<I>(svals)[tid] = thrust::get<I>(val) = thrust::get<I>(svals)[tid + delta];
For<I + 1, N>::copy(svals, val, tid, delta);
}
template <class KeyReferenceTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void mergeShfl(const KeyReferenceTuple& key, const ValReferenceTuple& val, const CmpTuple& cmp, unsigned int delta, int width)
{
typename GetType<typename thrust::tuple_element<I, KeyReferenceTuple>::type>::type reg = shfl_down(thrust::get<I>(key), delta, width);
if (thrust::get<I>(cmp)(reg, thrust::get<I>(key)))
{
thrust::get<I>(key) = reg;
thrust::get<I>(val) = shfl_down(thrust::get<I>(val), delta, width);
}
For<I + 1, N>::mergeShfl(key, val, cmp, delta, width);
}
template <class KeyPointerTuple, class KeyReferenceTuple, class ValPointerTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void merge(const KeyPointerTuple& skeys, const KeyReferenceTuple& key,
const ValPointerTuple& svals, const ValReferenceTuple& val,
const CmpTuple& cmp,
unsigned int tid, unsigned int delta)
{
typename GetType<typename thrust::tuple_element<I, KeyPointerTuple>::type>::type reg = thrust::get<I>(skeys)[tid + delta];
if (thrust::get<I>(cmp)(reg, thrust::get<I>(key)))
{
thrust::get<I>(skeys)[tid] = thrust::get<I>(key) = reg;
thrust::get<I>(svals)[tid] = thrust::get<I>(val) = thrust::get<I>(svals)[tid + delta];
}
For<I + 1, N>::merge(skeys, key, svals, val, cmp, tid, delta);
}
};
template <unsigned int N>
struct For<N, N>
{
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadToSmem(const PointerTuple&, const ReferenceTuple&, unsigned int)
{
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void loadFromSmem(const PointerTuple&, const ReferenceTuple&, unsigned int)
{
}
template <class ReferenceTuple>
static __device__ void copyShfl(const ReferenceTuple&, unsigned int, int)
{
}
template <class PointerTuple, class ReferenceTuple>
static __device__ void copy(const PointerTuple&, const ReferenceTuple&, unsigned int, unsigned int)
{
}
template <class KeyReferenceTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void mergeShfl(const KeyReferenceTuple&, const ValReferenceTuple&, const CmpTuple&, unsigned int, int)
{
}
template <class KeyPointerTuple, class KeyReferenceTuple, class ValPointerTuple, class ValReferenceTuple, class CmpTuple>
static __device__ void merge(const KeyPointerTuple&, const KeyReferenceTuple&,
const ValPointerTuple&, const ValReferenceTuple&,
const CmpTuple&,
unsigned int, unsigned int)
{
}
};
//////////////////////////////////////////////////////
// loadToSmem
template <typename T>
__device__ __forceinline__ void loadToSmem(volatile T* smem, T& data, unsigned int tid)
{
smem[tid] = data;
}
template <typename T>
__device__ __forceinline__ void loadFromSmem(volatile T* smem, T& data, unsigned int tid)
{
data = smem[tid];
}
template <typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void loadToSmem(const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& smem,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& data,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::loadToSmem(smem, data, tid);
}
template <typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void loadFromSmem(const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& smem,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& data,
unsigned int tid)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::loadFromSmem(smem, data, tid);
}
//////////////////////////////////////////////////////
// copyVals
template <typename V>
__device__ __forceinline__ void copyValsShfl(V& val, unsigned int delta, int width)
{
val = shfl_down(val, delta, width);
}
template <typename V>
__device__ __forceinline__ void copyVals(volatile V* svals, V& val, unsigned int tid, unsigned int delta)
{
svals[tid] = val = svals[tid + delta];
}
template <typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void copyValsShfl(const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int delta,
int width)
{
For<0, thrust::tuple_size<thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9> >::value>::copyShfl(val, delta, width);
}
template <typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9>
__device__ __forceinline__ void copyVals(const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int tid, unsigned int delta)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::copy(svals, val, tid, delta);
}
//////////////////////////////////////////////////////
// merge
template <typename K, typename V, class Cmp>
__device__ __forceinline__ void mergeShfl(K& key, V& val, const Cmp& cmp, unsigned int delta, int width)
{
K reg = shfl_down(key, delta, width);
if (cmp(reg, key))
{
key = reg;
copyValsShfl(val, delta, width);
}
}
template <typename K, typename V, class Cmp>
__device__ __forceinline__ void merge(volatile K* skeys, K& key, volatile V* svals, V& val, const Cmp& cmp, unsigned int tid, unsigned int delta)
{
K reg = skeys[tid + delta];
if (cmp(reg, key))
{
skeys[tid] = key = reg;
copyVals(svals, val, tid, delta);
}
}
template <typename K,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp>
__device__ __forceinline__ void mergeShfl(K& key,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const Cmp& cmp,
unsigned int delta, int width)
{
K reg = shfl_down(key, delta, width);
if (cmp(reg, key))
{
key = reg;
copyValsShfl(val, delta, width);
}
}
template <typename K,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp>
__device__ __forceinline__ void merge(volatile K* skeys, K& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const Cmp& cmp, unsigned int tid, unsigned int delta)
{
K reg = skeys[tid + delta];
if (cmp(reg, key))
{
skeys[tid] = key = reg;
copyVals(svals, val, tid, delta);
}
}
template <typename KR0, typename KR1, typename KR2, typename KR3, typename KR4, typename KR5, typename KR6, typename KR7, typename KR8, typename KR9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp0, class Cmp1, class Cmp2, class Cmp3, class Cmp4, class Cmp5, class Cmp6, class Cmp7, class Cmp8, class Cmp9>
__device__ __forceinline__ void mergeShfl(const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>& key,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>& cmp,
unsigned int delta, int width)
{
For<0, thrust::tuple_size<thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9> >::value>::mergeShfl(key, val, cmp, delta, width);
}
template <typename KP0, typename KP1, typename KP2, typename KP3, typename KP4, typename KP5, typename KP6, typename KP7, typename KP8, typename KP9,
typename KR0, typename KR1, typename KR2, typename KR3, typename KR4, typename KR5, typename KR6, typename KR7, typename KR8, typename KR9,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp0, class Cmp1, class Cmp2, class Cmp3, class Cmp4, class Cmp5, class Cmp6, class Cmp7, class Cmp8, class Cmp9>
__device__ __forceinline__ void merge(const thrust::tuple<KP0, KP1, KP2, KP3, KP4, KP5, KP6, KP7, KP8, KP9>& skeys,
const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>& cmp,
unsigned int tid, unsigned int delta)
{
For<0, thrust::tuple_size<thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9> >::value>::merge(skeys, key, svals, val, cmp, tid, delta);
}
//////////////////////////////////////////////////////
// Generic
template <unsigned int N> struct Generic
{
template <class KP, class KR, class VP, class VR, class Cmp>
static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
loadToSmem(skeys, key, tid);
loadValsToSmem(svals, val, tid);
if (N >= 32)
__syncthreads();
if (N >= 2048)
{
if (tid < 1024)
merge(skeys, key, svals, val, cmp, tid, 1024);
__syncthreads();
}
if (N >= 1024)
{
if (tid < 512)
merge(skeys, key, svals, val, cmp, tid, 512);
__syncthreads();
}
if (N >= 512)
{
if (tid < 256)
merge(skeys, key, svals, val, cmp, tid, 256);
__syncthreads();
}
if (N >= 256)
{
if (tid < 128)
merge(skeys, key, svals, val, cmp, tid, 128);
__syncthreads();
}
if (N >= 128)
{
if (tid < 64)
merge(skeys, key, svals, val, cmp, tid, 64);
__syncthreads();
}
if (N >= 64)
{
if (tid < 32)
merge(skeys, key, svals, val, cmp, tid, 32);
}
if (tid < 16)
{
merge(skeys, key, svals, val, cmp, tid, 16);
merge(skeys, key, svals, val, cmp, tid, 8);
merge(skeys, key, svals, val, cmp, tid, 4);
merge(skeys, key, svals, val, cmp, tid, 2);
merge(skeys, key, svals, val, cmp, tid, 1);
}
}
};
template <unsigned int I, class KP, class KR, class VP, class VR, class Cmp>
struct Unroll
{
static __device__ void loopShfl(KR key, VR val, Cmp cmp, unsigned int N)
{
mergeShfl(key, val, cmp, I, N);
Unroll<I / 2, KP, KR, VP, VR, Cmp>::loopShfl(key, val, cmp, N);
}
static __device__ void loop(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
merge(skeys, key, svals, val, cmp, tid, I);
Unroll<I / 2, KP, KR, VP, VR, Cmp>::loop(skeys, key, svals, val, tid, cmp);
}
};
template <class KP, class KR, class VP, class VR, class Cmp>
struct Unroll<0, KP, KR, VP, VR, Cmp>
{
static __device__ void loopShfl(KR, VR, Cmp, unsigned int)
{
}
static __device__ void loop(KP, KR, VP, VR, unsigned int, Cmp)
{
}
};
template <unsigned int N> struct WarpOptimized
{
template <class KP, class KR, class VP, class VR, class Cmp>
static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
#if 0 // __CUDA_ARCH__ >= 300
CV_UNUSED(skeys);
CV_UNUSED(svals);
CV_UNUSED(tid);
Unroll<N / 2, KP, KR, VP, VR, Cmp>::loopShfl(key, val, cmp, N);
#else
loadToSmem(skeys, key, tid);
loadToSmem(svals, val, tid);
if (tid < N / 2)
Unroll<N / 2, KP, KR, VP, VR, Cmp>::loop(skeys, key, svals, val, tid, cmp);
#endif
}
};
template <unsigned int N> struct GenericOptimized32
{
enum { M = N / 32 };
template <class KP, class KR, class VP, class VR, class Cmp>
static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp)
{
const unsigned int laneId = Warp::laneId();
#if 0 // __CUDA_ARCH__ >= 300
Unroll<16, KP, KR, VP, VR, Cmp>::loopShfl(key, val, cmp, warpSize);
if (laneId == 0)
{
loadToSmem(skeys, key, tid / 32);
loadToSmem(svals, val, tid / 32);
}
#else
loadToSmem(skeys, key, tid);
loadToSmem(svals, val, tid);
if (laneId < 16)
Unroll<16, KP, KR, VP, VR, Cmp>::loop(skeys, key, svals, val, tid, cmp);
__syncthreads();
if (laneId == 0)
{
loadToSmem(skeys, key, tid / 32);
loadToSmem(svals, val, tid / 32);
}
#endif
__syncthreads();
loadFromSmem(skeys, key, tid);
if (tid < 32)
{
#if 0 // __CUDA_ARCH__ >= 300
loadFromSmem(svals, val, tid);
Unroll<M / 2, KP, KR, VP, VR, Cmp>::loopShfl(key, val, cmp, M);
#else
Unroll<M / 2, KP, KR, VP, VR, Cmp>::loop(skeys, key, svals, val, tid, cmp);
#endif
}
}
};
template <bool val, class T1, class T2> struct StaticIf;
template <class T1, class T2> struct StaticIf<true, T1, T2>
{
typedef T1 type;
};
template <class T1, class T2> struct StaticIf<false, T1, T2>
{
typedef T2 type;
};
template <unsigned int N> struct IsPowerOf2
{
enum { value = ((N != 0) && !(N & (N - 1))) };
};
template <unsigned int N> struct Dispatcher
{
typedef typename StaticIf<
(N <= 32) && IsPowerOf2<N>::value,
WarpOptimized<N>,
typename StaticIf<
(N <= 1024) && IsPowerOf2<N>::value,
GenericOptimized32<N>,
Generic<N>
>::type
>::type reductor;
};
}
}}}
//! @endcond
#endif // OPENCV_CUDA_PRED_VAL_REDUCE_DETAIL_HPP

View File

@@ -0,0 +1,392 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_TRANSFORM_DETAIL_HPP
#define OPENCV_CUDA_TRANSFORM_DETAIL_HPP
#include "../common.hpp"
#include "../vec_traits.hpp"
#include "../functional.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace transform_detail
{
//! Read Write Traits
template <typename T, typename D, int shift> struct UnaryReadWriteTraits
{
typedef typename TypeVec<T, shift>::vec_type read_type;
typedef typename TypeVec<D, shift>::vec_type write_type;
};
template <typename T1, typename T2, typename D, int shift> struct BinaryReadWriteTraits
{
typedef typename TypeVec<T1, shift>::vec_type read_type1;
typedef typename TypeVec<T2, shift>::vec_type read_type2;
typedef typename TypeVec<D, shift>::vec_type write_type;
};
//! Transform kernels
template <int shift> struct OpUnroller;
template <> struct OpUnroller<1>
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
}
};
template <> struct OpUnroller<2>
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
}
};
template <> struct OpUnroller<3>
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
if (mask(y, x_shifted + 2))
dst.z = op(src.z);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
if (mask(y, x_shifted + 2))
dst.z = op(src1.z, src2.z);
}
};
template <> struct OpUnroller<4>
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src.x);
if (mask(y, x_shifted + 1))
dst.y = op(src.y);
if (mask(y, x_shifted + 2))
dst.z = op(src.z);
if (mask(y, x_shifted + 3))
dst.w = op(src.w);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.x = op(src1.x, src2.x);
if (mask(y, x_shifted + 1))
dst.y = op(src1.y, src2.y);
if (mask(y, x_shifted + 2))
dst.z = op(src1.z, src2.z);
if (mask(y, x_shifted + 3))
dst.w = op(src1.w, src2.w);
}
};
template <> struct OpUnroller<8>
{
template <typename T, typename D, typename UnOp, typename Mask>
static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.a0 = op(src.a0);
if (mask(y, x_shifted + 1))
dst.a1 = op(src.a1);
if (mask(y, x_shifted + 2))
dst.a2 = op(src.a2);
if (mask(y, x_shifted + 3))
dst.a3 = op(src.a3);
if (mask(y, x_shifted + 4))
dst.a4 = op(src.a4);
if (mask(y, x_shifted + 5))
dst.a5 = op(src.a5);
if (mask(y, x_shifted + 6))
dst.a6 = op(src.a6);
if (mask(y, x_shifted + 7))
dst.a7 = op(src.a7);
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y)
{
if (mask(y, x_shifted))
dst.a0 = op(src1.a0, src2.a0);
if (mask(y, x_shifted + 1))
dst.a1 = op(src1.a1, src2.a1);
if (mask(y, x_shifted + 2))
dst.a2 = op(src1.a2, src2.a2);
if (mask(y, x_shifted + 3))
dst.a3 = op(src1.a3, src2.a3);
if (mask(y, x_shifted + 4))
dst.a4 = op(src1.a4, src2.a4);
if (mask(y, x_shifted + 5))
dst.a5 = op(src1.a5, src2.a5);
if (mask(y, x_shifted + 6))
dst.a6 = op(src1.a6, src2.a6);
if (mask(y, x_shifted + 7))
dst.a7 = op(src1.a7, src2.a7);
}
};
template <typename T, typename D, typename UnOp, typename Mask>
static __global__ void transformSmart(const PtrStepSz<T> src_, PtrStep<D> dst_, const Mask mask, const UnOp op)
{
typedef TransformFunctorTraits<UnOp> ft;
typedef typename UnaryReadWriteTraits<T, D, ft::smart_shift>::read_type read_type;
typedef typename UnaryReadWriteTraits<T, D, ft::smart_shift>::write_type write_type;
const int x = threadIdx.x + blockIdx.x * blockDim.x;
const int y = threadIdx.y + blockIdx.y * blockDim.y;
const int x_shifted = x * ft::smart_shift;
if (y < src_.rows)
{
const T* src = src_.ptr(y);
D* dst = dst_.ptr(y);
if (x_shifted + ft::smart_shift - 1 < src_.cols)
{
const read_type src_n_el = ((const read_type*)src)[x];
OpUnroller<ft::smart_shift>::unroll(src_n_el, ((write_type*)dst)[x], mask, op, x_shifted, y);
}
else
{
for (int real_x = x_shifted; real_x < src_.cols; ++real_x)
{
if (mask(y, real_x))
dst[real_x] = op(src[real_x]);
}
}
}
}
template <typename T, typename D, typename UnOp, typename Mask>
__global__ static void transformSimple(const PtrStepSz<T> src, PtrStep<D> dst, const Mask mask, const UnOp op)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < src.cols && y < src.rows && mask(y, x))
{
dst.ptr(y)[x] = op(src.ptr(y)[x]);
}
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __global__ void transformSmart(const PtrStepSz<T1> src1_, const PtrStep<T2> src2_, PtrStep<D> dst_,
const Mask mask, const BinOp op)
{
typedef TransformFunctorTraits<BinOp> ft;
typedef typename BinaryReadWriteTraits<T1, T2, D, ft::smart_shift>::read_type1 read_type1;
typedef typename BinaryReadWriteTraits<T1, T2, D, ft::smart_shift>::read_type2 read_type2;
typedef typename BinaryReadWriteTraits<T1, T2, D, ft::smart_shift>::write_type write_type;
const int x = threadIdx.x + blockIdx.x * blockDim.x;
const int y = threadIdx.y + blockIdx.y * blockDim.y;
const int x_shifted = x * ft::smart_shift;
if (y < src1_.rows)
{
const T1* src1 = src1_.ptr(y);
const T2* src2 = src2_.ptr(y);
D* dst = dst_.ptr(y);
if (x_shifted + ft::smart_shift - 1 < src1_.cols)
{
const read_type1 src1_n_el = ((const read_type1*)src1)[x];
const read_type2 src2_n_el = ((const read_type2*)src2)[x];
OpUnroller<ft::smart_shift>::unroll(src1_n_el, src2_n_el, ((write_type*)dst)[x], mask, op, x_shifted, y);
}
else
{
for (int real_x = x_shifted; real_x < src1_.cols; ++real_x)
{
if (mask(y, real_x))
dst[real_x] = op(src1[real_x], src2[real_x]);
}
}
}
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static __global__ void transformSimple(const PtrStepSz<T1> src1, const PtrStep<T2> src2, PtrStep<D> dst,
const Mask mask, const BinOp op)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < src1.cols && y < src1.rows && mask(y, x))
{
const T1 src1_data = src1.ptr(y)[x];
const T2 src2_data = src2.ptr(y)[x];
dst.ptr(y)[x] = op(src1_data, src2_data);
}
}
template <bool UseSmart> struct TransformDispatcher;
template<> struct TransformDispatcher<false>
{
template <typename T, typename D, typename UnOp, typename Mask>
static void call(PtrStepSz<T> src, PtrStepSz<D> dst, UnOp op, Mask mask, cudaStream_t stream)
{
typedef TransformFunctorTraits<UnOp> ft;
const dim3 threads(ft::simple_block_dim_x, ft::simple_block_dim_y, 1);
const dim3 grid(divUp(src.cols, threads.x), divUp(src.rows, threads.y), 1);
transformSimple<T, D><<<grid, threads, 0, stream>>>(src, dst, mask, op);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static void call(PtrStepSz<T1> src1, PtrStepSz<T2> src2, PtrStepSz<D> dst, BinOp op, Mask mask, cudaStream_t stream)
{
typedef TransformFunctorTraits<BinOp> ft;
const dim3 threads(ft::simple_block_dim_x, ft::simple_block_dim_y, 1);
const dim3 grid(divUp(src1.cols, threads.x), divUp(src1.rows, threads.y), 1);
transformSimple<T1, T2, D><<<grid, threads, 0, stream>>>(src1, src2, dst, mask, op);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
template<> struct TransformDispatcher<true>
{
template <typename T, typename D, typename UnOp, typename Mask>
static void call(PtrStepSz<T> src, PtrStepSz<D> dst, UnOp op, Mask mask, cudaStream_t stream)
{
typedef TransformFunctorTraits<UnOp> ft;
CV_StaticAssert(ft::smart_shift != 1, "");
if (!isAligned(src.data, ft::smart_shift * sizeof(T)) || !isAligned(src.step, ft::smart_shift * sizeof(T)) ||
!isAligned(dst.data, ft::smart_shift * sizeof(D)) || !isAligned(dst.step, ft::smart_shift * sizeof(D)))
{
TransformDispatcher<false>::call(src, dst, op, mask, stream);
return;
}
const dim3 threads(ft::smart_block_dim_x, ft::smart_block_dim_y, 1);
const dim3 grid(divUp(src.cols, threads.x * ft::smart_shift), divUp(src.rows, threads.y), 1);
transformSmart<T, D><<<grid, threads, 0, stream>>>(src, dst, mask, op);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <typename T1, typename T2, typename D, typename BinOp, typename Mask>
static void call(PtrStepSz<T1> src1, PtrStepSz<T2> src2, PtrStepSz<D> dst, BinOp op, Mask mask, cudaStream_t stream)
{
typedef TransformFunctorTraits<BinOp> ft;
CV_StaticAssert(ft::smart_shift != 1, "");
if (!isAligned(src1.data, ft::smart_shift * sizeof(T1)) || !isAligned(src1.step, ft::smart_shift * sizeof(T1)) ||
!isAligned(src2.data, ft::smart_shift * sizeof(T2)) || !isAligned(src2.step, ft::smart_shift * sizeof(T2)) ||
!isAligned(dst.data, ft::smart_shift * sizeof(D)) || !isAligned(dst.step, ft::smart_shift * sizeof(D)))
{
TransformDispatcher<false>::call(src1, src2, dst, op, mask, stream);
return;
}
const dim3 threads(ft::smart_block_dim_x, ft::smart_block_dim_y, 1);
const dim3 grid(divUp(src1.cols, threads.x * ft::smart_shift), divUp(src1.rows, threads.y), 1);
transformSmart<T1, T2, D><<<grid, threads, 0, stream>>>(src1, src2, dst, mask, op);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
};
} // namespace transform_detail
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // OPENCV_CUDA_TRANSFORM_DETAIL_HPP

View File

@@ -0,0 +1,191 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_TYPE_TRAITS_DETAIL_HPP
#define OPENCV_CUDA_TYPE_TRAITS_DETAIL_HPP
#include "../common.hpp"
#include "../vec_traits.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace type_traits_detail
{
template <bool, typename T1, typename T2> struct Select { typedef T1 type; };
template <typename T1, typename T2> struct Select<false, T1, T2> { typedef T2 type; };
template <typename T> struct IsSignedIntergral { enum {value = 0}; };
template <> struct IsSignedIntergral<schar> { enum {value = 1}; };
template <> struct IsSignedIntergral<char1> { enum {value = 1}; };
template <> struct IsSignedIntergral<short> { enum {value = 1}; };
template <> struct IsSignedIntergral<short1> { enum {value = 1}; };
template <> struct IsSignedIntergral<int> { enum {value = 1}; };
template <> struct IsSignedIntergral<int1> { enum {value = 1}; };
template <typename T> struct IsUnsignedIntegral { enum {value = 0}; };
template <> struct IsUnsignedIntegral<uchar> { enum {value = 1}; };
template <> struct IsUnsignedIntegral<uchar1> { enum {value = 1}; };
template <> struct IsUnsignedIntegral<ushort> { enum {value = 1}; };
template <> struct IsUnsignedIntegral<ushort1> { enum {value = 1}; };
template <> struct IsUnsignedIntegral<uint> { enum {value = 1}; };
template <> struct IsUnsignedIntegral<uint1> { enum {value = 1}; };
template <typename T> struct IsIntegral { enum {value = IsSignedIntergral<T>::value || IsUnsignedIntegral<T>::value}; };
template <> struct IsIntegral<char> { enum {value = 1}; };
template <> struct IsIntegral<bool> { enum {value = 1}; };
template <typename T> struct IsFloat { enum {value = 0}; };
template <> struct IsFloat<float> { enum {value = 1}; };
template <> struct IsFloat<double> { enum {value = 1}; };
template <typename T> struct IsVec { enum {value = 0}; };
template <> struct IsVec<uchar1> { enum {value = 1}; };
template <> struct IsVec<uchar2> { enum {value = 1}; };
template <> struct IsVec<uchar3> { enum {value = 1}; };
template <> struct IsVec<uchar4> { enum {value = 1}; };
template <> struct IsVec<uchar8> { enum {value = 1}; };
template <> struct IsVec<char1> { enum {value = 1}; };
template <> struct IsVec<char2> { enum {value = 1}; };
template <> struct IsVec<char3> { enum {value = 1}; };
template <> struct IsVec<char4> { enum {value = 1}; };
template <> struct IsVec<char8> { enum {value = 1}; };
template <> struct IsVec<ushort1> { enum {value = 1}; };
template <> struct IsVec<ushort2> { enum {value = 1}; };
template <> struct IsVec<ushort3> { enum {value = 1}; };
template <> struct IsVec<ushort4> { enum {value = 1}; };
template <> struct IsVec<ushort8> { enum {value = 1}; };
template <> struct IsVec<short1> { enum {value = 1}; };
template <> struct IsVec<short2> { enum {value = 1}; };
template <> struct IsVec<short3> { enum {value = 1}; };
template <> struct IsVec<short4> { enum {value = 1}; };
template <> struct IsVec<short8> { enum {value = 1}; };
template <> struct IsVec<uint1> { enum {value = 1}; };
template <> struct IsVec<uint2> { enum {value = 1}; };
template <> struct IsVec<uint3> { enum {value = 1}; };
template <> struct IsVec<uint4> { enum {value = 1}; };
template <> struct IsVec<uint8> { enum {value = 1}; };
template <> struct IsVec<int1> { enum {value = 1}; };
template <> struct IsVec<int2> { enum {value = 1}; };
template <> struct IsVec<int3> { enum {value = 1}; };
template <> struct IsVec<int4> { enum {value = 1}; };
template <> struct IsVec<int8> { enum {value = 1}; };
template <> struct IsVec<float1> { enum {value = 1}; };
template <> struct IsVec<float2> { enum {value = 1}; };
template <> struct IsVec<float3> { enum {value = 1}; };
template <> struct IsVec<float4> { enum {value = 1}; };
template <> struct IsVec<float8> { enum {value = 1}; };
template <> struct IsVec<double1> { enum {value = 1}; };
template <> struct IsVec<double2> { enum {value = 1}; };
template <> struct IsVec<double3> { enum {value = 1}; };
template <> struct IsVec<double4> { enum {value = 1}; };
template <> struct IsVec<double8> { enum {value = 1}; };
template <class U> struct AddParameterType { typedef const U& type; };
template <class U> struct AddParameterType<U&> { typedef U& type; };
template <> struct AddParameterType<void> { typedef void type; };
template <class U> struct ReferenceTraits
{
enum { value = false };
typedef U type;
};
template <class U> struct ReferenceTraits<U&>
{
enum { value = true };
typedef U type;
};
template <class U> struct PointerTraits
{
enum { value = false };
typedef void type;
};
template <class U> struct PointerTraits<U*>
{
enum { value = true };
typedef U type;
};
template <class U> struct PointerTraits<U*&>
{
enum { value = true };
typedef U type;
};
template <class U> struct UnConst
{
typedef U type;
enum { value = 0 };
};
template <class U> struct UnConst<const U>
{
typedef U type;
enum { value = 1 };
};
template <class U> struct UnConst<const U&>
{
typedef U& type;
enum { value = 1 };
};
template <class U> struct UnVolatile
{
typedef U type;
enum { value = 0 };
};
template <class U> struct UnVolatile<volatile U>
{
typedef U type;
enum { value = 1 };
};
template <class U> struct UnVolatile<volatile U&>
{
typedef U& type;
enum { value = 1 };
};
} // namespace type_traits_detail
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // OPENCV_CUDA_TYPE_TRAITS_DETAIL_HPP

View File

@@ -0,0 +1,121 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_VEC_DISTANCE_DETAIL_HPP
#define OPENCV_CUDA_VEC_DISTANCE_DETAIL_HPP
#include "../datamov_utils.hpp"
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
namespace vec_distance_detail
{
template <int THREAD_DIM, int N> struct UnrollVecDiffCached
{
template <typename Dist, typename T1, typename T2>
static __device__ void calcCheck(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, int ind)
{
if (ind < len)
{
T1 val1 = *vecCached++;
T2 val2;
ForceGlob<T2>::Load(vecGlob, ind, val2);
dist.reduceIter(val1, val2);
UnrollVecDiffCached<THREAD_DIM, N - 1>::calcCheck(vecCached, vecGlob, len, dist, ind + THREAD_DIM);
}
}
template <typename Dist, typename T1, typename T2>
static __device__ void calcWithoutCheck(const T1* vecCached, const T2* vecGlob, Dist& dist)
{
T1 val1 = *vecCached++;
T2 val2;
ForceGlob<T2>::Load(vecGlob, 0, val2);
vecGlob += THREAD_DIM;
dist.reduceIter(val1, val2);
UnrollVecDiffCached<THREAD_DIM, N - 1>::calcWithoutCheck(vecCached, vecGlob, dist);
}
};
template <int THREAD_DIM> struct UnrollVecDiffCached<THREAD_DIM, 0>
{
template <typename Dist, typename T1, typename T2>
static __device__ __forceinline__ void calcCheck(const T1*, const T2*, int, Dist&, int)
{
}
template <typename Dist, typename T1, typename T2>
static __device__ __forceinline__ void calcWithoutCheck(const T1*, const T2*, Dist&)
{
}
};
template <int THREAD_DIM, int MAX_LEN, bool LEN_EQ_MAX_LEN> struct VecDiffCachedCalculator;
template <int THREAD_DIM, int MAX_LEN> struct VecDiffCachedCalculator<THREAD_DIM, MAX_LEN, false>
{
template <typename Dist, typename T1, typename T2>
static __device__ __forceinline__ void calc(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, int tid)
{
UnrollVecDiffCached<THREAD_DIM, MAX_LEN / THREAD_DIM>::calcCheck(vecCached, vecGlob, len, dist, tid);
}
};
template <int THREAD_DIM, int MAX_LEN> struct VecDiffCachedCalculator<THREAD_DIM, MAX_LEN, true>
{
template <typename Dist, typename T1, typename T2>
static __device__ __forceinline__ void calc(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, int tid)
{
UnrollVecDiffCached<THREAD_DIM, MAX_LEN / THREAD_DIM>::calcWithoutCheck(vecCached, vecGlob + tid, dist);
}
};
} // namespace vec_distance_detail
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // OPENCV_CUDA_VEC_DISTANCE_DETAIL_HPP

View File

@@ -0,0 +1,88 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_DYNAMIC_SMEM_HPP
#define OPENCV_CUDA_DYNAMIC_SMEM_HPP
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template<class T> struct DynamicSharedMem
{
__device__ __forceinline__ operator T*()
{
extern __shared__ int __smem[];
return (T*)__smem;
}
__device__ __forceinline__ operator const T*() const
{
extern __shared__ int __smem[];
return (T*)__smem;
}
};
// specialize for double to avoid unaligned memory access compile errors
template<> struct DynamicSharedMem<double>
{
__device__ __forceinline__ operator double*()
{
extern __shared__ double __smem_d[];
return (double*)__smem_d;
}
__device__ __forceinline__ operator const double*() const
{
extern __shared__ double __smem_d[];
return (double*)__smem_d;
}
};
}}}
//! @endcond
#endif // OPENCV_CUDA_DYNAMIC_SMEM_HPP

View File

@@ -0,0 +1,269 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_EMULATION_HPP_
#define OPENCV_CUDA_EMULATION_HPP_
#include "common.hpp"
#include "warp_reduce.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
struct Emulation
{
static __device__ __forceinline__ int syncthreadsOr(int pred)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 200)
// just campilation stab
return 0;
#else
return __syncthreads_or(pred);
#endif
}
template<int CTA_SIZE>
static __forceinline__ __device__ int Ballot(int predicate)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ >= 200)
return __ballot(predicate);
#else
__shared__ volatile int cta_buffer[CTA_SIZE];
int tid = threadIdx.x;
cta_buffer[tid] = predicate ? (1 << (tid & 31)) : 0;
return warp_reduce(cta_buffer);
#endif
}
struct smem
{
enum { TAG_MASK = (1U << ( (sizeof(unsigned int) << 3) - 5U)) - 1U };
template<typename T>
static __device__ __forceinline__ T atomicInc(T* address, T val)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
T count;
unsigned int tag = threadIdx.x << ( (sizeof(unsigned int) << 3) - 5U);
do
{
count = *address & TAG_MASK;
count = tag | (count + 1);
*address = count;
} while (*address != count);
return (count & TAG_MASK) - 1;
#else
return ::atomicInc(address, val);
#endif
}
template<typename T>
static __device__ __forceinline__ T atomicAdd(T* address, T val)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
T count;
unsigned int tag = threadIdx.x << ( (sizeof(unsigned int) << 3) - 5U);
do
{
count = *address & TAG_MASK;
count = tag | (count + val);
*address = count;
} while (*address != count);
return (count & TAG_MASK) - val;
#else
return ::atomicAdd(address, val);
#endif
}
template<typename T>
static __device__ __forceinline__ T atomicMin(T* address, T val)
{
#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120)
T count = ::min(*address, val);
do
{
*address = count;
} while (*address > count);
return count;
#else
return ::atomicMin(address, val);
#endif
}
}; // struct cmem
struct glob
{
static __device__ __forceinline__ int atomicAdd(int* address, int val)
{
return ::atomicAdd(address, val);
}
static __device__ __forceinline__ unsigned int atomicAdd(unsigned int* address, unsigned int val)
{
return ::atomicAdd(address, val);
}
static __device__ __forceinline__ float atomicAdd(float* address, float val)
{
#if __CUDA_ARCH__ >= 200
return ::atomicAdd(address, val);
#else
int* address_as_i = (int*) address;
int old = *address_as_i, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_i, assumed,
__float_as_int(val + __int_as_float(assumed)));
} while (assumed != old);
return __int_as_float(old);
#endif
}
static __device__ __forceinline__ double atomicAdd(double* address, double val)
{
#if __CUDA_ARCH__ >= 130
unsigned long long int* address_as_ull = (unsigned long long int*) address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_ull, assumed,
__double_as_longlong(val + __longlong_as_double(assumed)));
} while (assumed != old);
return __longlong_as_double(old);
#else
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0;
#endif
}
static __device__ __forceinline__ int atomicMin(int* address, int val)
{
return ::atomicMin(address, val);
}
static __device__ __forceinline__ float atomicMin(float* address, float val)
{
#if __CUDA_ARCH__ >= 120
int* address_as_i = (int*) address;
int old = *address_as_i, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_i, assumed,
__float_as_int(::fminf(val, __int_as_float(assumed))));
} while (assumed != old);
return __int_as_float(old);
#else
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0f;
#endif
}
static __device__ __forceinline__ double atomicMin(double* address, double val)
{
#if __CUDA_ARCH__ >= 130
unsigned long long int* address_as_ull = (unsigned long long int*) address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_ull, assumed,
__double_as_longlong(::fmin(val, __longlong_as_double(assumed))));
} while (assumed != old);
return __longlong_as_double(old);
#else
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0;
#endif
}
static __device__ __forceinline__ int atomicMax(int* address, int val)
{
return ::atomicMax(address, val);
}
static __device__ __forceinline__ float atomicMax(float* address, float val)
{
#if __CUDA_ARCH__ >= 120
int* address_as_i = (int*) address;
int old = *address_as_i, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_i, assumed,
__float_as_int(::fmaxf(val, __int_as_float(assumed))));
} while (assumed != old);
return __int_as_float(old);
#else
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0f;
#endif
}
static __device__ __forceinline__ double atomicMax(double* address, double val)
{
#if __CUDA_ARCH__ >= 130
unsigned long long int* address_as_ull = (unsigned long long int*) address;
unsigned long long int old = *address_as_ull, assumed;
do {
assumed = old;
old = ::atomicCAS(address_as_ull, assumed,
__double_as_longlong(::fmax(val, __longlong_as_double(assumed))));
} while (assumed != old);
return __longlong_as_double(old);
#else
CV_UNUSED(address);
CV_UNUSED(val);
return 0.0;
#endif
}
};
}; //struct Emulation
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif /* OPENCV_CUDA_EMULATION_HPP_ */

View File

@@ -0,0 +1,293 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_FILTERS_HPP
#define OPENCV_CUDA_FILTERS_HPP
#include "saturate_cast.hpp"
#include "vec_traits.hpp"
#include "vec_math.hpp"
#include "type_traits.hpp"
#include "nppdefs.h"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <typename Ptr2D> struct PointFilter
{
typedef typename Ptr2D::elem_type elem_type;
typedef float index_type;
explicit __host__ __device__ __forceinline__ PointFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f)
: src(src_)
{
CV_UNUSED(fx);
CV_UNUSED(fy);
}
__device__ __forceinline__ elem_type operator ()(float y, float x) const
{
return src(__float2int_rz(y), __float2int_rz(x));
}
Ptr2D src;
};
template <typename Ptr2D> struct LinearFilter
{
typedef typename Ptr2D::elem_type elem_type;
typedef float index_type;
explicit __host__ __device__ __forceinline__ LinearFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f)
: src(src_)
{
CV_UNUSED(fx);
CV_UNUSED(fy);
}
__device__ __forceinline__ elem_type operator ()(float y, float x) const
{
typedef typename TypeVec<float, VecTraits<elem_type>::cn>::vec_type work_type;
work_type out = VecTraits<work_type>::all(0);
const int x1 = __float2int_rd(x);
const int y1 = __float2int_rd(y);
if (x1 <= NPP_MIN_32S || x1 >= NPP_MAX_32S || y1 <= NPP_MIN_32S || y1 >= NPP_MAX_32S)
{
elem_type src_reg = src(y1, x1);
out = out + src_reg * 1.0f;
return saturate_cast<elem_type>(out);
}
const int x2 = x1 + 1;
const int y2 = y1 + 1;
elem_type src_reg = src(y1, x1);
out = out + src_reg * ((x2 - x) * (y2 - y));
src_reg = src(y1, x2);
out = out + src_reg * ((x - x1) * (y2 - y));
src_reg = src(y2, x1);
out = out + src_reg * ((x2 - x) * (y - y1));
src_reg = src(y2, x2);
out = out + src_reg * ((x - x1) * (y - y1));
return saturate_cast<elem_type>(out);
}
Ptr2D src;
};
template <typename Ptr2D> struct CubicFilter
{
typedef typename Ptr2D::elem_type elem_type;
typedef float index_type;
typedef typename TypeVec<float, VecTraits<elem_type>::cn>::vec_type work_type;
explicit __host__ __device__ __forceinline__ CubicFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f)
: src(src_)
{
CV_UNUSED(fx);
CV_UNUSED(fy);
}
static __device__ __forceinline__ float bicubicCoeff(float x_)
{
float x = fabsf(x_);
if (x <= 1.0f)
{
return x * x * (1.5f * x - 2.5f) + 1.0f;
}
else if (x < 2.0f)
{
return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f;
}
else
{
return 0.0f;
}
}
__device__ elem_type operator ()(float y, float x) const
{
const float xmin = ::ceilf(x - 2.0f);
const float xmax = ::floorf(x + 2.0f);
const float ymin = ::ceilf(y - 2.0f);
const float ymax = ::floorf(y + 2.0f);
work_type sum = VecTraits<work_type>::all(0);
float wsum = 0.0f;
for (float cy = ymin; cy <= ymax; cy += 1.0f)
{
for (float cx = xmin; cx <= xmax; cx += 1.0f)
{
const float w = bicubicCoeff(x - cx) * bicubicCoeff(y - cy);
sum = sum + w * src(__float2int_rd(cy), __float2int_rd(cx));
wsum += w;
}
}
work_type res = (!wsum)? VecTraits<work_type>::all(0) : sum / wsum;
return saturate_cast<elem_type>(res);
}
Ptr2D src;
};
// for integer scaling
template <typename Ptr2D> struct IntegerAreaFilter
{
typedef typename Ptr2D::elem_type elem_type;
typedef float index_type;
explicit __host__ __device__ __forceinline__ IntegerAreaFilter(const Ptr2D& src_, float scale_x_, float scale_y_)
: src(src_), scale_x(scale_x_), scale_y(scale_y_), scale(1.f / (scale_x * scale_y)) {}
__device__ __forceinline__ elem_type operator ()(float y, float x) const
{
float fsx1 = x * scale_x;
float fsx2 = fsx1 + scale_x;
int sx1 = __float2int_ru(fsx1);
int sx2 = __float2int_rd(fsx2);
float fsy1 = y * scale_y;
float fsy2 = fsy1 + scale_y;
int sy1 = __float2int_ru(fsy1);
int sy2 = __float2int_rd(fsy2);
typedef typename TypeVec<float, VecTraits<elem_type>::cn>::vec_type work_type;
work_type out = VecTraits<work_type>::all(0.f);
for(int dy = sy1; dy < sy2; ++dy)
for(int dx = sx1; dx < sx2; ++dx)
{
out = out + src(dy, dx) * scale;
}
return saturate_cast<elem_type>(out);
}
Ptr2D src;
float scale_x, scale_y ,scale;
};
template <typename Ptr2D> struct AreaFilter
{
typedef typename Ptr2D::elem_type elem_type;
typedef float index_type;
explicit __host__ __device__ __forceinline__ AreaFilter(const Ptr2D& src_, float scale_x_, float scale_y_)
: src(src_), scale_x(scale_x_), scale_y(scale_y_){}
__device__ __forceinline__ elem_type operator ()(float y, float x) const
{
float fsx1 = x * scale_x;
float fsx2 = fsx1 + scale_x;
int sx1 = __float2int_ru(fsx1);
int sx2 = __float2int_rd(fsx2);
float fsy1 = y * scale_y;
float fsy2 = fsy1 + scale_y;
int sy1 = __float2int_ru(fsy1);
int sy2 = __float2int_rd(fsy2);
float scale = 1.f / (fminf(scale_x, src.width - fsx1) * fminf(scale_y, src.height - fsy1));
typedef typename TypeVec<float, VecTraits<elem_type>::cn>::vec_type work_type;
work_type out = VecTraits<work_type>::all(0.f);
for (int dy = sy1; dy < sy2; ++dy)
{
for (int dx = sx1; dx < sx2; ++dx)
out = out + src(dy, dx) * scale;
if (sx1 > fsx1)
out = out + src(dy, (sx1 -1) ) * ((sx1 - fsx1) * scale);
if (sx2 < fsx2)
out = out + src(dy, sx2) * ((fsx2 -sx2) * scale);
}
if (sy1 > fsy1)
for (int dx = sx1; dx < sx2; ++dx)
out = out + src( (sy1 - 1) , dx) * ((sy1 -fsy1) * scale);
if (sy2 < fsy2)
for (int dx = sx1; dx < sx2; ++dx)
out = out + src(sy2, dx) * ((fsy2 -sy2) * scale);
if ((sy1 > fsy1) && (sx1 > fsx1))
out = out + src( (sy1 - 1) , (sx1 - 1)) * ((sy1 -fsy1) * (sx1 -fsx1) * scale);
if ((sy1 > fsy1) && (sx2 < fsx2))
out = out + src( (sy1 - 1) , sx2) * ((sy1 -fsy1) * (fsx2 -sx2) * scale);
if ((sy2 < fsy2) && (sx2 < fsx2))
out = out + src(sy2, sx2) * ((fsy2 -sy2) * (fsx2 -sx2) * scale);
if ((sy2 < fsy2) && (sx1 > fsx1))
out = out + src(sy2, (sx1 - 1)) * ((fsy2 -sy2) * (sx1 -fsx1) * scale);
return saturate_cast<elem_type>(out);
}
Ptr2D src;
float scale_x, scale_y;
int width, haight;
};
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // OPENCV_CUDA_FILTERS_HPP

View File

@@ -0,0 +1,79 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_DEVICE_FUNCATTRIB_HPP
#define OPENCV_CUDA_DEVICE_FUNCATTRIB_HPP
#include <cstdio>
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template<class Func>
void printFuncAttrib(Func& func)
{
cudaFuncAttributes attrs;
cudaFuncGetAttributes(&attrs, func);
printf("=== Function stats ===\n");
printf("Name: \n");
printf("sharedSizeBytes = %d\n", attrs.sharedSizeBytes);
printf("constSizeBytes = %d\n", attrs.constSizeBytes);
printf("localSizeBytes = %d\n", attrs.localSizeBytes);
printf("maxThreadsPerBlock = %d\n", attrs.maxThreadsPerBlock);
printf("numRegs = %d\n", attrs.numRegs);
printf("ptxVersion = %d\n", attrs.ptxVersion);
printf("binaryVersion = %d\n", attrs.binaryVersion);
printf("\n");
fflush(stdout);
}
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif /* OPENCV_CUDA_DEVICE_FUNCATTRIB_HPP */

View File

@@ -0,0 +1,805 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_FUNCTIONAL_HPP
#define OPENCV_CUDA_FUNCTIONAL_HPP
#include <functional>
#include "saturate_cast.hpp"
#include "vec_traits.hpp"
#include "type_traits.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
// Function Objects
template<typename Argument, typename Result> struct unary_function
{
typedef Argument argument_type;
typedef Result result_type;
};
template<typename Argument1, typename Argument2, typename Result> struct binary_function
{
typedef Argument1 first_argument_type;
typedef Argument2 second_argument_type;
typedef Result result_type;
};
// Arithmetic Operations
template <typename T> struct plus : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a + b;
}
__host__ __device__ __forceinline__ plus() {}
__host__ __device__ __forceinline__ plus(const plus&) {}
};
template <typename T> struct minus : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a - b;
}
__host__ __device__ __forceinline__ minus() {}
__host__ __device__ __forceinline__ minus(const minus&) {}
};
template <typename T> struct multiplies : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a * b;
}
__host__ __device__ __forceinline__ multiplies() {}
__host__ __device__ __forceinline__ multiplies(const multiplies&) {}
};
template <typename T> struct divides : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a / b;
}
__host__ __device__ __forceinline__ divides() {}
__host__ __device__ __forceinline__ divides(const divides&) {}
};
template <typename T> struct modulus : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a % b;
}
__host__ __device__ __forceinline__ modulus() {}
__host__ __device__ __forceinline__ modulus(const modulus&) {}
};
template <typename T> struct negate : unary_function<T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a) const
{
return -a;
}
__host__ __device__ __forceinline__ negate() {}
__host__ __device__ __forceinline__ negate(const negate&) {}
};
// Comparison Operations
template <typename T> struct equal_to : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a == b;
}
__host__ __device__ __forceinline__ equal_to() {}
__host__ __device__ __forceinline__ equal_to(const equal_to&) {}
};
template <typename T> struct not_equal_to : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a != b;
}
__host__ __device__ __forceinline__ not_equal_to() {}
__host__ __device__ __forceinline__ not_equal_to(const not_equal_to&) {}
};
template <typename T> struct greater : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a > b;
}
__host__ __device__ __forceinline__ greater() {}
__host__ __device__ __forceinline__ greater(const greater&) {}
};
template <typename T> struct less : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a < b;
}
__host__ __device__ __forceinline__ less() {}
__host__ __device__ __forceinline__ less(const less&) {}
};
template <typename T> struct greater_equal : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a >= b;
}
__host__ __device__ __forceinline__ greater_equal() {}
__host__ __device__ __forceinline__ greater_equal(const greater_equal&) {}
};
template <typename T> struct less_equal : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a <= b;
}
__host__ __device__ __forceinline__ less_equal() {}
__host__ __device__ __forceinline__ less_equal(const less_equal&) {}
};
// Logical Operations
template <typename T> struct logical_and : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a && b;
}
__host__ __device__ __forceinline__ logical_and() {}
__host__ __device__ __forceinline__ logical_and(const logical_and&) {}
};
template <typename T> struct logical_or : binary_function<T, T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a || b;
}
__host__ __device__ __forceinline__ logical_or() {}
__host__ __device__ __forceinline__ logical_or(const logical_or&) {}
};
template <typename T> struct logical_not : unary_function<T, bool>
{
__device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a) const
{
return !a;
}
__host__ __device__ __forceinline__ logical_not() {}
__host__ __device__ __forceinline__ logical_not(const logical_not&) {}
};
// Bitwise Operations
template <typename T> struct bit_and : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a & b;
}
__host__ __device__ __forceinline__ bit_and() {}
__host__ __device__ __forceinline__ bit_and(const bit_and&) {}
};
template <typename T> struct bit_or : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a | b;
}
__host__ __device__ __forceinline__ bit_or() {}
__host__ __device__ __forceinline__ bit_or(const bit_or&) {}
};
template <typename T> struct bit_xor : binary_function<T, T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
typename TypeTraits<T>::ParameterType b) const
{
return a ^ b;
}
__host__ __device__ __forceinline__ bit_xor() {}
__host__ __device__ __forceinline__ bit_xor(const bit_xor&) {}
};
template <typename T> struct bit_not : unary_function<T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType v) const
{
return ~v;
}
__host__ __device__ __forceinline__ bit_not() {}
__host__ __device__ __forceinline__ bit_not(const bit_not&) {}
};
// Generalized Identity Operations
template <typename T> struct identity : unary_function<T, T>
{
__device__ __forceinline__ typename TypeTraits<T>::ParameterType operator()(typename TypeTraits<T>::ParameterType x) const
{
return x;
}
__host__ __device__ __forceinline__ identity() {}
__host__ __device__ __forceinline__ identity(const identity&) {}
};
template <typename T1, typename T2> struct project1st : binary_function<T1, T2, T1>
{
__device__ __forceinline__ typename TypeTraits<T1>::ParameterType operator()(typename TypeTraits<T1>::ParameterType lhs, typename TypeTraits<T2>::ParameterType rhs) const
{
return lhs;
}
__host__ __device__ __forceinline__ project1st() {}
__host__ __device__ __forceinline__ project1st(const project1st&) {}
};
template <typename T1, typename T2> struct project2nd : binary_function<T1, T2, T2>
{
__device__ __forceinline__ typename TypeTraits<T2>::ParameterType operator()(typename TypeTraits<T1>::ParameterType lhs, typename TypeTraits<T2>::ParameterType rhs) const
{
return rhs;
}
__host__ __device__ __forceinline__ project2nd() {}
__host__ __device__ __forceinline__ project2nd(const project2nd&) {}
};
// Min/Max Operations
#define OPENCV_CUDA_IMPLEMENT_MINMAX(name, type, op) \
template <> struct name<type> : binary_function<type, type, type> \
{ \
__device__ __forceinline__ type operator()(type lhs, type rhs) const {return op(lhs, rhs);} \
__host__ __device__ __forceinline__ name() {}\
__host__ __device__ __forceinline__ name(const name&) {}\
};
template <typename T> struct maximum : binary_function<T, T, T>
{
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType lhs, typename TypeTraits<T>::ParameterType rhs) const
{
return max(lhs, rhs);
}
__host__ __device__ __forceinline__ maximum() {}
__host__ __device__ __forceinline__ maximum(const maximum&) {}
};
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, uchar, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, schar, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, char, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, ushort, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, short, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, int, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, uint, ::max)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, float, ::fmax)
OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, double, ::fmax)
template <typename T> struct minimum : binary_function<T, T, T>
{
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType lhs, typename TypeTraits<T>::ParameterType rhs) const
{
return min(lhs, rhs);
}
__host__ __device__ __forceinline__ minimum() {}
__host__ __device__ __forceinline__ minimum(const minimum&) {}
};
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, uchar, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, schar, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, char, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, ushort, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, short, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, int, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, uint, ::min)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, float, ::fmin)
OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, double, ::fmin)
#undef OPENCV_CUDA_IMPLEMENT_MINMAX
// Math functions
template <typename T> struct abs_func : unary_function<T, T>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType x) const
{
return abs(x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<unsigned char> : unary_function<unsigned char, unsigned char>
{
__device__ __forceinline__ unsigned char operator ()(unsigned char x) const
{
return x;
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<signed char> : unary_function<signed char, signed char>
{
__device__ __forceinline__ signed char operator ()(signed char x) const
{
return ::abs((int)x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<char> : unary_function<char, char>
{
__device__ __forceinline__ char operator ()(char x) const
{
return ::abs((int)x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<unsigned short> : unary_function<unsigned short, unsigned short>
{
__device__ __forceinline__ unsigned short operator ()(unsigned short x) const
{
return x;
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<short> : unary_function<short, short>
{
__device__ __forceinline__ short operator ()(short x) const
{
return ::abs((int)x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<unsigned int> : unary_function<unsigned int, unsigned int>
{
__device__ __forceinline__ unsigned int operator ()(unsigned int x) const
{
return x;
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<int> : unary_function<int, int>
{
__device__ __forceinline__ int operator ()(int x) const
{
return ::abs(x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<float> : unary_function<float, float>
{
__device__ __forceinline__ float operator ()(float x) const
{
return ::fabsf(x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
template <> struct abs_func<double> : unary_function<double, double>
{
__device__ __forceinline__ double operator ()(double x) const
{
return ::fabs(x);
}
__host__ __device__ __forceinline__ abs_func() {}
__host__ __device__ __forceinline__ abs_func(const abs_func&) {}
};
#define OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(name, func) \
template <typename T> struct name ## _func : unary_function<T, float> \
{ \
__device__ __forceinline__ float operator ()(typename TypeTraits<T>::ParameterType v) const \
{ \
return func ## f(v); \
} \
__host__ __device__ __forceinline__ name ## _func() {} \
__host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
}; \
template <> struct name ## _func<double> : unary_function<double, double> \
{ \
__device__ __forceinline__ double operator ()(double v) const \
{ \
return func(v); \
} \
__host__ __device__ __forceinline__ name ## _func() {} \
__host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
};
#define OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(name, func) \
template <typename T> struct name ## _func : binary_function<T, T, float> \
{ \
__device__ __forceinline__ float operator ()(typename TypeTraits<T>::ParameterType v1, typename TypeTraits<T>::ParameterType v2) const \
{ \
return func ## f(v1, v2); \
} \
__host__ __device__ __forceinline__ name ## _func() {} \
__host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
}; \
template <> struct name ## _func<double> : binary_function<double, double, double> \
{ \
__device__ __forceinline__ double operator ()(double v1, double v2) const \
{ \
return func(v1, v2); \
} \
__host__ __device__ __forceinline__ name ## _func() {} \
__host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
};
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sqrt, ::sqrt)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp, ::exp)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp2, ::exp2)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp10, ::exp10)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log, ::log)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log2, ::log2)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log10, ::log10)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sin, ::sin)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(cos, ::cos)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(tan, ::tan)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(asin, ::asin)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(acos, ::acos)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(atan, ::atan)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sinh, ::sinh)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(cosh, ::cosh)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(tanh, ::tanh)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(asinh, ::asinh)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(acosh, ::acosh)
OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(atanh, ::atanh)
OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(hypot, ::hypot)
OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(atan2, ::atan2)
OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(pow, ::pow)
#undef OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR
#undef OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR_NO_DOUBLE
#undef OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR
template<typename T> struct hypot_sqr_func : binary_function<T, T, float>
{
__device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType src1, typename TypeTraits<T>::ParameterType src2) const
{
return src1 * src1 + src2 * src2;
}
__host__ __device__ __forceinline__ hypot_sqr_func() {}
__host__ __device__ __forceinline__ hypot_sqr_func(const hypot_sqr_func&) {}
};
// Saturate Cast Functor
template <typename T, typename D> struct saturate_cast_func : unary_function<T, D>
{
__device__ __forceinline__ D operator ()(typename TypeTraits<T>::ParameterType v) const
{
return saturate_cast<D>(v);
}
__host__ __device__ __forceinline__ saturate_cast_func() {}
__host__ __device__ __forceinline__ saturate_cast_func(const saturate_cast_func&) {}
};
// Threshold Functors
template <typename T> struct thresh_binary_func : unary_function<T, T>
{
__host__ __device__ __forceinline__ thresh_binary_func(T thresh_, T maxVal_) : thresh(thresh_), maxVal(maxVal_) {}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
return (src > thresh) * maxVal;
}
__host__ __device__ __forceinline__ thresh_binary_func() {}
__host__ __device__ __forceinline__ thresh_binary_func(const thresh_binary_func& other)
: thresh(other.thresh), maxVal(other.maxVal) {}
T thresh;
T maxVal;
};
template <typename T> struct thresh_binary_inv_func : unary_function<T, T>
{
__host__ __device__ __forceinline__ thresh_binary_inv_func(T thresh_, T maxVal_) : thresh(thresh_), maxVal(maxVal_) {}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
return (src <= thresh) * maxVal;
}
__host__ __device__ __forceinline__ thresh_binary_inv_func() {}
__host__ __device__ __forceinline__ thresh_binary_inv_func(const thresh_binary_inv_func& other)
: thresh(other.thresh), maxVal(other.maxVal) {}
T thresh;
T maxVal;
};
template <typename T> struct thresh_trunc_func : unary_function<T, T>
{
explicit __host__ __device__ __forceinline__ thresh_trunc_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {CV_UNUSED(maxVal_);}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
return minimum<T>()(src, thresh);
}
__host__ __device__ __forceinline__ thresh_trunc_func() {}
__host__ __device__ __forceinline__ thresh_trunc_func(const thresh_trunc_func& other)
: thresh(other.thresh) {}
T thresh;
};
template <typename T> struct thresh_to_zero_func : unary_function<T, T>
{
explicit __host__ __device__ __forceinline__ thresh_to_zero_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {CV_UNUSED(maxVal_);}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
return (src > thresh) * src;
}
__host__ __device__ __forceinline__ thresh_to_zero_func() {}
__host__ __device__ __forceinline__ thresh_to_zero_func(const thresh_to_zero_func& other)
: thresh(other.thresh) {}
T thresh;
};
template <typename T> struct thresh_to_zero_inv_func : unary_function<T, T>
{
explicit __host__ __device__ __forceinline__ thresh_to_zero_inv_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {CV_UNUSED(maxVal_);}
__device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
{
return (src <= thresh) * src;
}
__host__ __device__ __forceinline__ thresh_to_zero_inv_func() {}
__host__ __device__ __forceinline__ thresh_to_zero_inv_func(const thresh_to_zero_inv_func& other)
: thresh(other.thresh) {}
T thresh;
};
// Function Object Adaptors
template <typename Predicate> struct unary_negate : unary_function<typename Predicate::argument_type, bool>
{
explicit __host__ __device__ __forceinline__ unary_negate(const Predicate& p) : pred(p) {}
__device__ __forceinline__ bool operator()(typename TypeTraits<typename Predicate::argument_type>::ParameterType x) const
{
return !pred(x);
}
__host__ __device__ __forceinline__ unary_negate() {}
__host__ __device__ __forceinline__ unary_negate(const unary_negate& other) : pred(other.pred) {}
Predicate pred;
};
template <typename Predicate> __host__ __device__ __forceinline__ unary_negate<Predicate> not1(const Predicate& pred)
{
return unary_negate<Predicate>(pred);
}
template <typename Predicate> struct binary_negate : binary_function<typename Predicate::first_argument_type, typename Predicate::second_argument_type, bool>
{
explicit __host__ __device__ __forceinline__ binary_negate(const Predicate& p) : pred(p) {}
__device__ __forceinline__ bool operator()(typename TypeTraits<typename Predicate::first_argument_type>::ParameterType x,
typename TypeTraits<typename Predicate::second_argument_type>::ParameterType y) const
{
return !pred(x,y);
}
__host__ __device__ __forceinline__ binary_negate() {}
__host__ __device__ __forceinline__ binary_negate(const binary_negate& other) : pred(other.pred) {}
Predicate pred;
};
template <typename BinaryPredicate> __host__ __device__ __forceinline__ binary_negate<BinaryPredicate> not2(const BinaryPredicate& pred)
{
return binary_negate<BinaryPredicate>(pred);
}
template <typename Op> struct binder1st : unary_function<typename Op::second_argument_type, typename Op::result_type>
{
__host__ __device__ __forceinline__ binder1st(const Op& op_, const typename Op::first_argument_type& arg1_) : op(op_), arg1(arg1_) {}
__device__ __forceinline__ typename Op::result_type operator ()(typename TypeTraits<typename Op::second_argument_type>::ParameterType a) const
{
return op(arg1, a);
}
__host__ __device__ __forceinline__ binder1st() {}
__host__ __device__ __forceinline__ binder1st(const binder1st& other) : op(other.op), arg1(other.arg1) {}
Op op;
typename Op::first_argument_type arg1;
};
template <typename Op, typename T> __host__ __device__ __forceinline__ binder1st<Op> bind1st(const Op& op, const T& x)
{
return binder1st<Op>(op, typename Op::first_argument_type(x));
}
template <typename Op> struct binder2nd : unary_function<typename Op::first_argument_type, typename Op::result_type>
{
__host__ __device__ __forceinline__ binder2nd(const Op& op_, const typename Op::second_argument_type& arg2_) : op(op_), arg2(arg2_) {}
__forceinline__ __device__ typename Op::result_type operator ()(typename TypeTraits<typename Op::first_argument_type>::ParameterType a) const
{
return op(a, arg2);
}
__host__ __device__ __forceinline__ binder2nd() {}
__host__ __device__ __forceinline__ binder2nd(const binder2nd& other) : op(other.op), arg2(other.arg2) {}
Op op;
typename Op::second_argument_type arg2;
};
template <typename Op, typename T> __host__ __device__ __forceinline__ binder2nd<Op> bind2nd(const Op& op, const T& x)
{
return binder2nd<Op>(op, typename Op::second_argument_type(x));
}
// Functor Traits
template <typename F> struct IsUnaryFunction
{
typedef char Yes;
struct No {Yes a[2];};
template <typename T, typename D> static Yes check(unary_function<T, D>);
static No check(...);
static F makeF();
enum { value = (sizeof(check(makeF())) == sizeof(Yes)) };
};
template <typename F> struct IsBinaryFunction
{
typedef char Yes;
struct No {Yes a[2];};
template <typename T1, typename T2, typename D> static Yes check(binary_function<T1, T2, D>);
static No check(...);
static F makeF();
enum { value = (sizeof(check(makeF())) == sizeof(Yes)) };
};
namespace functional_detail
{
template <size_t src_elem_size, size_t dst_elem_size> struct UnOpShift { enum { shift = 1 }; };
template <size_t src_elem_size> struct UnOpShift<src_elem_size, 1> { enum { shift = 4 }; };
template <size_t src_elem_size> struct UnOpShift<src_elem_size, 2> { enum { shift = 2 }; };
template <typename T, typename D> struct DefaultUnaryShift
{
enum { shift = UnOpShift<sizeof(T), sizeof(D)>::shift };
};
template <size_t src_elem_size1, size_t src_elem_size2, size_t dst_elem_size> struct BinOpShift { enum { shift = 1 }; };
template <size_t src_elem_size1, size_t src_elem_size2> struct BinOpShift<src_elem_size1, src_elem_size2, 1> { enum { shift = 4 }; };
template <size_t src_elem_size1, size_t src_elem_size2> struct BinOpShift<src_elem_size1, src_elem_size2, 2> { enum { shift = 2 }; };
template <typename T1, typename T2, typename D> struct DefaultBinaryShift
{
enum { shift = BinOpShift<sizeof(T1), sizeof(T2), sizeof(D)>::shift };
};
template <typename Func, bool unary = IsUnaryFunction<Func>::value> struct ShiftDispatcher;
template <typename Func> struct ShiftDispatcher<Func, true>
{
enum { shift = DefaultUnaryShift<typename Func::argument_type, typename Func::result_type>::shift };
};
template <typename Func> struct ShiftDispatcher<Func, false>
{
enum { shift = DefaultBinaryShift<typename Func::first_argument_type, typename Func::second_argument_type, typename Func::result_type>::shift };
};
}
template <typename Func> struct DefaultTransformShift
{
enum { shift = functional_detail::ShiftDispatcher<Func>::shift };
};
template <typename Func> struct DefaultTransformFunctorTraits
{
enum { simple_block_dim_x = 16 };
enum { simple_block_dim_y = 16 };
enum { smart_block_dim_x = 16 };
enum { smart_block_dim_y = 16 };
enum { smart_shift = DefaultTransformShift<Func>::shift };
};
template <typename Func> struct TransformFunctorTraits : DefaultTransformFunctorTraits<Func> {};
#define OPENCV_CUDA_TRANSFORM_FUNCTOR_TRAITS(type) \
template <> struct TransformFunctorTraits< type > : DefaultTransformFunctorTraits< type >
}}} // namespace cv { namespace cuda { namespace cudev
//! @endcond
#endif // OPENCV_CUDA_FUNCTIONAL_HPP

View File

@@ -0,0 +1,128 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_LIMITS_HPP
#define OPENCV_CUDA_LIMITS_HPP
#include <limits.h>
#include <float.h>
#include "common.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <class T> struct numeric_limits;
template <> struct numeric_limits<bool>
{
__device__ __forceinline__ static bool min() { return false; }
__device__ __forceinline__ static bool max() { return true; }
static const bool is_signed = false;
};
template <> struct numeric_limits<signed char>
{
__device__ __forceinline__ static signed char min() { return SCHAR_MIN; }
__device__ __forceinline__ static signed char max() { return SCHAR_MAX; }
static const bool is_signed = true;
};
template <> struct numeric_limits<unsigned char>
{
__device__ __forceinline__ static unsigned char min() { return 0; }
__device__ __forceinline__ static unsigned char max() { return UCHAR_MAX; }
static const bool is_signed = false;
};
template <> struct numeric_limits<short>
{
__device__ __forceinline__ static short min() { return SHRT_MIN; }
__device__ __forceinline__ static short max() { return SHRT_MAX; }
static const bool is_signed = true;
};
template <> struct numeric_limits<unsigned short>
{
__device__ __forceinline__ static unsigned short min() { return 0; }
__device__ __forceinline__ static unsigned short max() { return USHRT_MAX; }
static const bool is_signed = false;
};
template <> struct numeric_limits<int>
{
__device__ __forceinline__ static int min() { return INT_MIN; }
__device__ __forceinline__ static int max() { return INT_MAX; }
static const bool is_signed = true;
};
template <> struct numeric_limits<unsigned int>
{
__device__ __forceinline__ static unsigned int min() { return 0; }
__device__ __forceinline__ static unsigned int max() { return UINT_MAX; }
static const bool is_signed = false;
};
template <> struct numeric_limits<float>
{
__device__ __forceinline__ static float min() { return FLT_MIN; }
__device__ __forceinline__ static float max() { return FLT_MAX; }
__device__ __forceinline__ static float epsilon() { return FLT_EPSILON; }
static const bool is_signed = true;
};
template <> struct numeric_limits<double>
{
__device__ __forceinline__ static double min() { return DBL_MIN; }
__device__ __forceinline__ static double max() { return DBL_MAX; }
__device__ __forceinline__ static double epsilon() { return DBL_EPSILON; }
static const bool is_signed = true;
};
}}} // namespace cv { namespace cuda { namespace cudev {
//! @endcond
#endif // OPENCV_CUDA_LIMITS_HPP

View File

@@ -0,0 +1,209 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_REDUCE_HPP
#define OPENCV_CUDA_REDUCE_HPP
#ifndef THRUST_DEBUG // eliminate -Wundef warning
#define THRUST_DEBUG 0
#endif
#include <thrust/tuple.h>
#include "detail/reduce.hpp"
#include "detail/reduce_key_val.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template <int N, typename T, class Op>
__device__ __forceinline__ void reduce(volatile T* smem, T& val, unsigned int tid, const Op& op)
{
reduce_detail::Dispatcher<N>::reductor::template reduce<volatile T*, T&, const Op&>(smem, val, tid, op);
}
template <int N,
typename P0, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6, typename P7, typename P8, typename P9,
typename R0, typename R1, typename R2, typename R3, typename R4, typename R5, typename R6, typename R7, typename R8, typename R9,
class Op0, class Op1, class Op2, class Op3, class Op4, class Op5, class Op6, class Op7, class Op8, class Op9>
__device__ __forceinline__ void reduce(const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>& smem,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>& val,
unsigned int tid,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>& op)
{
reduce_detail::Dispatcher<N>::reductor::template reduce<
const thrust::tuple<P0, P1, P2, P3, P4, P5, P6, P7, P8, P9>&,
const thrust::tuple<R0, R1, R2, R3, R4, R5, R6, R7, R8, R9>&,
const thrust::tuple<Op0, Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8, Op9>&>(smem, val, tid, op);
}
template <unsigned int N, typename K, typename V, class Cmp>
__device__ __forceinline__ void reduceKeyVal(volatile K* skeys, K& key, volatile V* svals, V& val, unsigned int tid, const Cmp& cmp)
{
reduce_key_val_detail::Dispatcher<N>::reductor::template reduce<volatile K*, K&, volatile V*, V&, const Cmp&>(skeys, key, svals, val, tid, cmp);
}
template <unsigned int N,
typename K,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp>
__device__ __forceinline__ void reduceKeyVal(volatile K* skeys, K& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int tid, const Cmp& cmp)
{
reduce_key_val_detail::Dispatcher<N>::reductor::template reduce<volatile K*, K&,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>&,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>&,
const Cmp&>(skeys, key, svals, val, tid, cmp);
}
template <unsigned int N,
typename KP0, typename KP1, typename KP2, typename KP3, typename KP4, typename KP5, typename KP6, typename KP7, typename KP8, typename KP9,
typename KR0, typename KR1, typename KR2, typename KR3, typename KR4, typename KR5, typename KR6, typename KR7, typename KR8, typename KR9,
typename VP0, typename VP1, typename VP2, typename VP3, typename VP4, typename VP5, typename VP6, typename VP7, typename VP8, typename VP9,
typename VR0, typename VR1, typename VR2, typename VR3, typename VR4, typename VR5, typename VR6, typename VR7, typename VR8, typename VR9,
class Cmp0, class Cmp1, class Cmp2, class Cmp3, class Cmp4, class Cmp5, class Cmp6, class Cmp7, class Cmp8, class Cmp9>
__device__ __forceinline__ void reduceKeyVal(const thrust::tuple<KP0, KP1, KP2, KP3, KP4, KP5, KP6, KP7, KP8, KP9>& skeys,
const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>& key,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>& svals,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>& val,
unsigned int tid,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>& cmp)
{
reduce_key_val_detail::Dispatcher<N>::reductor::template reduce<
const thrust::tuple<KP0, KP1, KP2, KP3, KP4, KP5, KP6, KP7, KP8, KP9>&,
const thrust::tuple<KR0, KR1, KR2, KR3, KR4, KR5, KR6, KR7, KR8, KR9>&,
const thrust::tuple<VP0, VP1, VP2, VP3, VP4, VP5, VP6, VP7, VP8, VP9>&,
const thrust::tuple<VR0, VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8, VR9>&,
const thrust::tuple<Cmp0, Cmp1, Cmp2, Cmp3, Cmp4, Cmp5, Cmp6, Cmp7, Cmp8, Cmp9>&
>(skeys, key, svals, val, tid, cmp);
}
// smem_tuple
template <typename T0>
__device__ __forceinline__
thrust::tuple<volatile T0*>
smem_tuple(T0* t0)
{
return thrust::make_tuple((volatile T0*) t0);
}
template <typename T0, typename T1>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*>
smem_tuple(T0* t0, T1* t1)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1);
}
template <typename T0, typename T1, typename T2>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*>
smem_tuple(T0* t0, T1* t1, T2* t2)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2);
}
template <typename T0, typename T1, typename T2, typename T3>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*, volatile T7*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*, volatile T7*, volatile T8*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7, T8* t8)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7, (volatile T8*) t8);
}
template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9>
__device__ __forceinline__
thrust::tuple<volatile T0*, volatile T1*, volatile T2*, volatile T3*, volatile T4*, volatile T5*, volatile T6*, volatile T7*, volatile T8*, volatile T9*>
smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7, T8* t8, T9* t9)
{
return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7, (volatile T8*) t8, (volatile T9*) t9);
}
}}}
//! @endcond
#endif // OPENCV_CUDA_REDUCE_HPP

View File

@@ -0,0 +1,292 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_CUDA_SATURATE_CAST_HPP
#define OPENCV_CUDA_SATURATE_CAST_HPP
#include "common.hpp"
/** @file
* @deprecated Use @ref cudev instead.
*/
//! @cond IGNORED
namespace cv { namespace cuda { namespace device
{
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(uchar v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(schar v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(ushort v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(short v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(uint v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(int v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(float v) { return _Tp(v); }
template<typename _Tp> __device__ __forceinline__ _Tp saturate_cast(double v) { return _Tp(v); }
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(schar v)
{
uint res = 0;
int vi = v;
asm("cvt.sat.u8.s8 %0, %1;" : "=r"(res) : "r"(vi));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(short v)
{
uint res = 0;
asm("cvt.sat.u8.s16 %0, %1;" : "=r"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(ushort v)
{
uint res = 0;
asm("cvt.sat.u8.u16 %0, %1;" : "=r"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(int v)
{
uint res = 0;
asm("cvt.sat.u8.s32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(uint v)
{
uint res = 0;
asm("cvt.sat.u8.u32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(float v)
{
uint res = 0;
asm("cvt.rni.sat.u8.f32 %0, %1;" : "=r"(res) : "f"(v));
return res;
}
template<> __device__ __forceinline__ uchar saturate_cast<uchar>(double v)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130
uint res = 0;
asm("cvt.rni.sat.u8.f64 %0, %1;" : "=r"(res) : "d"(v));
return res;
#else
return saturate_cast<uchar>((float)v);
#endif
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(uchar v)
{
uint res = 0;
uint vi = v;
asm("cvt.sat.s8.u8 %0, %1;" : "=r"(res) : "r"(vi));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(short v)
{
uint res = 0;
asm("cvt.sat.s8.s16 %0, %1;" : "=r"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(ushort v)
{
uint res = 0;
asm("cvt.sat.s8.u16 %0, %1;" : "=r"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(int v)
{
uint res = 0;
asm("cvt.sat.s8.s32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(uint v)
{
uint res = 0;
asm("cvt.sat.s8.u32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(float v)
{
uint res = 0;
asm("cvt.rni.sat.s8.f32 %0, %1;" : "=r"(res) : "f"(v));
return res;
}
template<> __device__ __forceinline__ schar saturate_cast<schar>(double v)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130
uint res = 0;
asm("cvt.rni.sat.s8.f64 %0, %1;" : "=r"(res) : "d"(v));
return res;
#else
return saturate_cast<schar>((float)v);
#endif
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(schar v)
{
ushort res = 0;
int vi = v;
asm("cvt.sat.u16.s8 %0, %1;" : "=h"(res) : "r"(vi));
return res;
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(short v)
{
ushort res = 0;
asm("cvt.sat.u16.s16 %0, %1;" : "=h"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(int v)
{
ushort res = 0;
asm("cvt.sat.u16.s32 %0, %1;" : "=h"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(uint v)
{
ushort res = 0;
asm("cvt.sat.u16.u32 %0, %1;" : "=h"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(float v)
{
ushort res = 0;
asm("cvt.rni.sat.u16.f32 %0, %1;" : "=h"(res) : "f"(v));
return res;
}
template<> __device__ __forceinline__ ushort saturate_cast<ushort>(double v)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130
ushort res = 0;
asm("cvt.rni.sat.u16.f64 %0, %1;" : "=h"(res) : "d"(v));
return res;
#else
return saturate_cast<ushort>((float)v);
#endif
}
template<> __device__ __forceinline__ short saturate_cast<short>(ushort v)
{
short res = 0;
asm("cvt.sat.s16.u16 %0, %1;" : "=h"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ short saturate_cast<short>(int v)
{
short res = 0;
asm("cvt.sat.s16.s32 %0, %1;" : "=h"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ short saturate_cast<short>(uint v)
{
short res = 0;
asm("cvt.sat.s16.u32 %0, %1;" : "=h"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ short saturate_cast<short>(float v)
{
short res = 0;
asm("cvt.rni.sat.s16.f32 %0, %1;" : "=h"(res) : "f"(v));
return res;
}
template<> __device__ __forceinline__ short saturate_cast<short>(double v)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130
short res = 0;
asm("cvt.rni.sat.s16.f64 %0, %1;" : "=h"(res) : "d"(v));
return res;
#else
return saturate_cast<short>((float)v);
#endif
}
template<> __device__ __forceinline__ int saturate_cast<int>(uint v)
{
int res = 0;
asm("cvt.sat.s32.u32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ int saturate_cast<int>(float v)
{
return __float2int_rn(v);
}
template<> __device__ __forceinline__ int saturate_cast<int>(double v)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130
return __double2int_rn(v);
#else
return saturate_cast<int>((float)v);
#endif
}
template<> __device__ __forceinline__ uint saturate_cast<uint>(schar v)
{
uint res = 0;
int vi = v;
asm("cvt.sat.u32.s8 %0, %1;" : "=r"(res) : "r"(vi));
return res;
}
template<> __device__ __forceinline__ uint saturate_cast<uint>(short v)
{
uint res = 0;
asm("cvt.sat.u32.s16 %0, %1;" : "=r"(res) : "h"(v));
return res;
}
template<> __device__ __forceinline__ uint saturate_cast<uint>(int v)
{
uint res = 0;
asm("cvt.sat.u32.s32 %0, %1;" : "=r"(res) : "r"(v));
return res;
}
template<> __device__ __forceinline__ uint saturate_cast<uint>(float v)
{
return __float2uint_rn(v);
}
template<> __device__ __forceinline__ uint saturate_cast<uint>(double v)
{
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130
return __double2uint_rn(v);
#else
return saturate_cast<uint>((float)v);
#endif
}
}}}
//! @endcond
#endif /* OPENCV_CUDA_SATURATE_CAST_HPP */

Some files were not shown because too many files have changed in this diff Show More