/**************************************************************************** ** ** This file is part of the LibreCAD project, a 2D CAD program ** ** Copyright (C) 2010 R. van Twisk (librecad@rvt.dds.nl) ** Copyright (C) 2001-2003 RibbonSoft. All rights reserved. ** ** ** This file may be distributed and/or modified under the terms of the ** GNU General Public License version 2 as published by the Free Software ** Foundation and appearing in the file gpl-2.0.txt included in the ** packaging of this file. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ** ** This copyright notice MUST APPEAR in all copies of the script! ** **********************************************************************/ #include "rs_constructionline.h" #include "rs_debug.h" #include "lc_quadratic.h" #include "rs_math.h" RS_ConstructionLineData::RS_ConstructionLineData(): point1(false), point2(false) {} RS_ConstructionLineData::RS_ConstructionLineData(const RS_Vector& point1, const RS_Vector& point2): point1(point1) ,point2(point2) { } std::ostream& operator << (std::ostream& os, const RS_ConstructionLineData& ld) { os << "(" << ld.point1 << "/" << ld.point2 << ")"; return os; } /** * Constructor. */ RS_ConstructionLine::RS_ConstructionLine(RS_EntityContainer* parent, const RS_ConstructionLineData& d) :RS_AtomicEntity(parent), data(d) { calculateBorders(); } RS_Entity* RS_ConstructionLine::clone() const { RS_ConstructionLine* c = new RS_ConstructionLine(*this); c->initId(); return c; } void RS_ConstructionLine::calculateBorders() { minV = RS_Vector::minimum(data.point1, data.point2); maxV = RS_Vector::maximum(data.point1, data.point2); } RS_Vector RS_ConstructionLine::getNearestEndpoint(const RS_Vector& coord, double* dist) const{ double dist1, dist2; dist1 = (data.point1-coord).squared(); dist2 = (data.point2-coord).squared(); if (dist2(this); } RS_Vector ae = data.point2-data.point1; RS_Vector ea = data.point1-data.point2; RS_Vector ap = coord-data.point1; // RS_Vector ep = coord-data.point2; if (ae.magnitude()<1.0e-6 || ea.magnitude()<1.0e-6) { return RS_Vector(false); } // Orthogonal projection from both sides: RS_Vector ba = ae * RS_Vector::dotP(ae, ap) / (ae.magnitude()*ae.magnitude()); // RS_Vector be = ea * RS_Vector::dotP(ea, ep) // / (ea.magnitude()*ea.magnitude()); return data.point1+ba; } RS_Vector RS_ConstructionLine::getNearestCenter(const RS_Vector& /*coord*/, double* dist) const{ if (dist) { *dist = RS_MAXDOUBLE; } return RS_Vector(false); } /** @return Copy of data that defines the line. */ RS_ConstructionLineData const& RS_ConstructionLine::getData() const { return data; } /** @return First definition point. */ RS_Vector const& RS_ConstructionLine::getPoint1() const { return data.point1; } /** @return Second definition point. */ RS_Vector const& RS_ConstructionLine::getPoint2() const { return data.point2; } /** @return Start point of the entity */ RS_Vector RS_ConstructionLine::getStartpoint() const { return data.point1; } /** @return End point of the entity */ RS_Vector RS_ConstructionLine::getEndpoint() const { return data.point2; } /** * @return Direction 1. The angle at which the arc starts at * the startpoint. */ double RS_ConstructionLine::getDirection1(void) const { return RS_Math::correctAngle( data.point1.angleTo( data.point2)); } /** * @return Direction 2. The angle at which the arc starts at * the endpoint. */ double RS_ConstructionLine::getDirection2(void) const { return RS_Math::correctAngle( data.point2.angleTo( data.point1)); } /** return the equation of the entity for quadratic, return a vector contains: m0 x^2 + m1 xy + m2 y^2 + m3 x + m4 y + m5 =0 for linear: m0 x + m1 y + m2 =0 **/ LC_Quadratic RS_ConstructionLine::getQuadratic() const { std::vector ce(3,0.); auto dvp=data.point2 - data.point1; RS_Vector normal(-dvp.y,dvp.x); ce[0]=normal.x; ce[1]=normal.y; ce[2]= -normal.dotP(data.point2); return LC_Quadratic(ce); } RS_Vector RS_ConstructionLine::getMiddlePoint() const{ return RS_Vector(false); } RS_Vector RS_ConstructionLine::getNearestMiddle(const RS_Vector& /*coord*/, double* dist, const int /*middlePoints*/)const { if (dist) { *dist = RS_MAXDOUBLE; } return RS_Vector(false); } RS_Vector RS_ConstructionLine::getNearestDist(double /*distance*/, const RS_Vector& /*coord*/, double* dist) const{ if (dist) { *dist = RS_MAXDOUBLE; } return RS_Vector(false); } double RS_ConstructionLine::getDistanceToPoint(const RS_Vector& coord, RS_Entity** entity, RS2::ResolveLevel /*level*/, double /*solidDist*/) const { RS_DEBUG->print("RS_ConstructionLine::getDistanceToPoint"); if (entity) { *entity = const_cast(this); } //double dist = RS_MAXDOUBLE; RS_Vector se = data.point2-data.point1; double d(se.magnitude()); if(d