Files
newspark110/lib/engine/rs_vector.cpp
Chenwenxuan edac2715f0 init
2024-03-06 14:54:30 +08:00

852 lines
18 KiB
C++

/****************************************************************************
**
** This file is part of the LibreCAD project, a 2D CAD program
**
** Copyright (C) 2010 R. van Twisk (librecad@rvt.dds.nl)
** Copyright (C) 2001-2003 RibbonSoft. All rights reserved.
**
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file gpl-2.0.txt included in the
** packaging of this file.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
**
** This copyright notice MUST APPEAR in all copies of the script!
**
**********************************************************************/
#include <iostream>
#include <cmath>
#include <algorithm>
#include "rs_vector.h"
#include "rs_debug.h"
#include "rs_math.h"
#include "lc_rect.h"
#ifdef EMU_C99
#include "emu_c99.h" /* remainder() */
#endif
/**
* Constructor for a point with given coordinates.
*/
RS_Vector::RS_Vector(double vx, double vy, double vz):
x(vx)
,y(vy)
,z(vz)
,valid(true)
{
}
/**
* Constructor for a unit vector with given angle
*/
RS_Vector::RS_Vector(double angle):
x(cos(angle))
,y(sin(angle))
,valid(true)
{
}
/**
* Constructor for a point with given valid flag.
*
* @param valid true: a valid vector with default coordinates is created.
* false: an invalid vector is created
*/
RS_Vector::RS_Vector(bool valid):
valid(valid)
{
}
RS_Vector::operator bool() const
{
return valid;
}
/**
* Sets to a unit vector by the direction angle
*/
void RS_Vector::set(double angle) {
x = cos(angle);
y = sin(angle);
z = 0.;
valid = true;
}
/**
* Sets a new position for the vector.
*/
void RS_Vector::set(double vx, double vy, double vz) {
x = vx;
y = vy;
z = vz;
valid = true;
}
/**
* Sets a new position for the vector in polar coordinates.
*/
void RS_Vector::setPolar(double radius, double angle) {
x = radius * cos(angle);
y = radius * sin(angle);
z = 0.0;
valid = true;
}
RS_Vector RS_Vector::polar(double rho, double theta){
return {rho*cos(theta), rho*sin(theta), 0.};
}
/**
* @return The angle from zero to this vector (in rad).
*/
double RS_Vector::angle() const {
return RS_Math::correctAngle(atan2(y,x));
}
/**
* @return The angle from this and the given coordinate (in rad).
*/
double RS_Vector::angleTo(const RS_Vector& v) const {
if (!valid || !v.valid) return 0.0;
return (v-(*this)).angle();
}
/**
* @return The angle from between two vectors using the current vector as the center
* return 0, if the angle is not well defined
*/
double RS_Vector::angleBetween(const RS_Vector& v1, const RS_Vector& v2) const {
if (!valid || !v1.valid || !v2.valid) return 0.0;
RS_Vector const vStart(v1 - (*this));
RS_Vector const vEnd(v2 - (*this));
return RS_Math::correctAngle( atan2( vStart.x*vEnd.y-vStart.y*vEnd.x, vStart.x*vEnd.x+vStart.y*vEnd.y));
}
/**
* @return Magnitude (length) of the vector.
*/
double RS_Vector::magnitude() const {
double ret(0.0);
// Note that the z coordinate is also needed for 2d
// (due to definition of crossP())
if (valid)
ret = hypot(hypot(x, y), z);
return ret;
}
/**
* @return square of vector length
*/
double RS_Vector::squared() const {
// Note that the z coordinate is also needed for 2d
// (due to definition of crossP())
if (valid)
return x*x + y*y + z*z;
return RS_MAXDOUBLE;
}
/**
* @return square of vector length
*/
double RS_Vector::squaredTo(const RS_Vector& v1) const
{
if (valid && v1.valid) {
return (*this - v1).squared();
}
return RS_MAXDOUBLE;
}
/**
*
*/
RS_Vector RS_Vector::lerp(const RS_Vector& v, double t) const {
return {x+(v.x-x)*t, y+(v.y-y)*t};
}
/**
* @return The distance between this and the given coordinate.
*/
double RS_Vector::distanceTo(const RS_Vector& v) const {
if (!valid || !v.valid) {
return RS_MAXDOUBLE;
}
else {
return (*this-v).magnitude();
}
}
/**
* @return true is this vector is within the given range.
*/
bool RS_Vector::isInWindow(const RS_Vector& firstCorner,
const RS_Vector& secondCorner) const {
if (!valid) return false;
return LC_Rect{firstCorner, secondCorner}.inArea(*this);
}
/**
* @return true is this vector is within the given range
* of ordered vectors
*/
bool RS_Vector::isInWindowOrdered(const RS_Vector& vLow,
const RS_Vector& vHigh) const {
if(!valid) return false;
return (x>=vLow.x && x<=vHigh.x && y>=vLow.y && y<=vHigh.y);
}
/**
* move to the closest integer point
*/
RS_Vector RS_Vector::toInteger() {
x = rint(x);
y = rint(y);
return *this;
}
/**
* Moves this vector by the given offset. Equal to the operator +=.
*/
RS_Vector RS_Vector::move(const RS_Vector& offset) {
*this+=offset;
return *this;
}
/**
* Rotates this vector around 0/0 by the given angle.
*/
RS_Vector RS_Vector::rotate(double ang) {
rotate(RS_Vector{ang});
return *this;
}
/**
* Rotates this vector around 0/0 by the given vector
* if the vector is a unit, then, it's the same as rotating around
* 0/0 by the angle of the vector
*/
RS_Vector RS_Vector::rotate(const RS_Vector& angleVector) {
double x0 = x * angleVector.x - y * angleVector.y;
y = x * angleVector.y + y * angleVector.x;
x = x0;
return *this;
}
/**
* Rotates this vector around the given center by the given angle.
*/
RS_Vector RS_Vector::rotate(const RS_Vector& center, double ang) {
*this = center + (*this-center).rotate(ang);
return *this;
}
RS_Vector RS_Vector::rotate(const RS_Vector& center, const RS_Vector& angleVector) {
*this = center + (*this-center).rotate(angleVector);
return *this;
}
/**
* Scales this vector by the given factors with 0/0 as center.
*/
RS_Vector RS_Vector::scale(double factor) {
x *= factor;
y *= factor;
return *this;
}
/**
* Scales this vector by the given factors with 0/0 as center.
*/
RS_Vector RS_Vector::scale(const RS_Vector& factor) {
x *= factor.x;
y *= factor.y;
return *this;
}
RS_Vector RS_Vector::scale(const RS_Vector& factor) const{
return {x*factor.x, y*factor.y};
}
/**
* Scales this vector by the given factors with the given center.
*/
RS_Vector RS_Vector::scale(const RS_Vector& center, const RS_Vector& factor) {
*this = center + (*this-center).scale(factor);
return *this;
}
/**
* Mirrors this vector at the given axis, defined by two points on axis.
*/
RS_Vector RS_Vector::mirror(const RS_Vector& axisPoint1, const RS_Vector& axisPoint2) {
RS_Vector direction(axisPoint2-axisPoint1);
double a= direction.squared();
RS_Vector ret(false);
if(a<RS_TOLERANCE2) {
return ret;
}
ret= axisPoint1 + direction* dotP(*this - axisPoint1,direction)/a; //projection point
*this = ret + ret - *this;
return *this;
}
/**
* Streams the vector components to stdout. e.g.: "1/4/0"
*/
std::ostream& operator << (std::ostream& os, const RS_Vector& v) {
if(v.valid) {
os << v.x << "/" << v.y << "/" << v.z;
} else {
os << "invalid vector";
}
return os;
}
/**
* binary + operator.
*/
RS_Vector RS_Vector::operator + (const RS_Vector& v) const {
return {x + v.x, y + v.y, z + v.z};
}
/**
* binary - operator.
*/
RS_Vector RS_Vector::operator - (const RS_Vector& v) const {
return {x - v.x, y - v.y, z - v.z};
}
RS_Vector RS_Vector::operator + (double d) const {
return {x + d, y + d, z + d};
}
RS_Vector RS_Vector::operator - (double d) const {
return {x - d, y - d, z - d};
}
RS_Vector RS_Vector::operator * (const RS_Vector& v) const {
return {x * v.x, y * v.y, z * v.z};
}
RS_Vector RS_Vector::operator / (const RS_Vector& v) const {
if(fabs(v.x)> RS_TOLERANCE && fabs(v.y)>RS_TOLERANCE)
return {x / v.x, y / v.y, std::isnormal(v.z)?z / v.z:z};
return *this;
}
/**
* binary * operator.
*/
RS_Vector RS_Vector::operator * (double s) const {
return {x * s, y * s, z * s};
}
/**
* binary / operator.
*/
RS_Vector RS_Vector::operator / (double s) const {
if(fabs(s)> RS_TOLERANCE)
return {x / s, y / s, z / s};
return *this;
}
/**
* unary - operator.
*/
RS_Vector RS_Vector::operator - () const {
return {-x, -y, -z};
}
/**
* Scalarproduct (dot product).
*/
double RS_Vector::dotP(const RS_Vector& v1) const
{
return x*v1.x+y*v1.y;
}
double RS_Vector::dotP(const RS_Vector& v1, const RS_Vector& v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
/**
* Get position of \p pos in line \p start -> \p end,
* as a factor of line length.
*
* @param start Start point of the line
* @param end End point of the line
* @param pos Point to calculate
* @return double factor of line length,
* factor == 0.0 : \p pos is same as start point
* factor == 1.0 : \p pos is same as end point
* factor < 0.0 : \p pos is in opposite direction
* factor > 1.0 : \p pos is behind end point
* factor > 0.0 and < 1.0 : \p pos is somewhere between start and end
*/
double RS_Vector::posInLine(const RS_Vector& start,
const RS_Vector& end,
const RS_Vector& pos)
{
RS_Vector dirEnd {end - start};
RS_Vector dirPos {pos - start};
double lenSquared {dirEnd.squared()};
if( RS_TOLERANCE2 > lenSquared ) {
// line too short
return start.distanceTo( pos);
}
return dotP( dirPos, dirEnd) / lenSquared;
}
/** switch x,y for all vectors */
RS_Vector RS_Vector::flipXY(void) const{
return {y, x};
}
/**
* += operator. Assert: both vectors must be valid.
*/
RS_Vector RS_Vector::operator += (const RS_Vector& v) {
x += v.x;
y += v.y;
z += v.z;
return *this;
}
/**
* -= operator
*/
RS_Vector RS_Vector::operator -= (const RS_Vector& v) {
x -= v.x;
y -= v.y;
z -= v.z;
return *this;
}
RS_Vector RS_Vector::operator *= (const RS_Vector& v) {
x *= v.x;
y *= v.y;
z *= v.z;
return *this;
}
RS_Vector RS_Vector::operator /= (const RS_Vector& v) {
if (fabs(v.x)> RS_TOLERANCE && fabs(v.y)>RS_TOLERANCE){
x /= v.x;
y /= v.y;
if (std::isnormal(v.z))
z /= v.z;
}
return *this;
}
/**
* *= operator
*/
RS_Vector RS_Vector::operator *= (double s) {
x *= s;
y *= s;
z *= s;
return *this;
}
/**
* /= operator
*/
RS_Vector RS_Vector::operator /= (double s) {
if(fabs(s)>RS_TOLERANCE) {
x /= s;
y /= s;
z /= s;
}
return *this;
}
/**
* == operator
*/
bool RS_Vector::operator == (const RS_Vector& v) const {
return (x==v.x && y==v.y && z==v.z && valid && v.valid);
}
bool RS_Vector::operator == (bool valid) const
{
return this->valid == valid;
}
bool RS_Vector::operator != (bool valid) const
{
return this->valid != valid;
}
/**
* @return A vector with the minimum components from the vectors v1 and v2.
* These might be mixed components from both vectors.
*/
RS_Vector RS_Vector::minimum (const RS_Vector& v1, const RS_Vector& v2) {
if (!v2) return v1;
if (!v1) return v2;
return {std::min(v1.x, v2.x),
std::min(v1.y, v2.y),
std::min(v1.z, v2.z)
};
}
/**
* @return A vector with the maximum values from the vectors v1 and v2
*/
RS_Vector RS_Vector::maximum (const RS_Vector& v1, const RS_Vector& v2) {
if (!v2) return v1;
if (!v1) return v2;
return {std::max(v1.x, v2.x),
std::max(v1.y, v2.y),
std::max(v1.z, v2.z)
};
}
/**
* @return Cross product of two vectors.
* we don't need cross product for 2D vectors
*/
RS_Vector RS_Vector::crossP(const RS_Vector& v1, const RS_Vector& v2) {
return {v1.y*v2.z - v1.z*v2.y,
v1.z*v2.x - v1.x*v2.z,
v1.x*v2.y - v1.y*v2.x};
}
/**
* Constructor for no solution.
*/
RS_VectorSolutions::RS_VectorSolutions():
vector(0)
,tangent(false)
{
}
RS_VectorSolutions::RS_VectorSolutions(const std::vector<RS_Vector>& l):
vector( l.begin(), l.end())
,tangent(false)
{
}
/**
* Constructor for num solutions.
*/
RS_VectorSolutions::RS_VectorSolutions(int num):
vector(num, RS_Vector(false))
,tangent(false)
{
}
RS_VectorSolutions::RS_VectorSolutions(std::initializer_list<RS_Vector> const& l):
vector(l)
,tangent(false)
{
}
/**
* Allocates 'num' vectors.
*/
void RS_VectorSolutions::alloc(size_t num) {
if(num<=vector.size()){
vector.resize(num);
}else{
const std::vector<RS_Vector> v(num - vector.size());
vector.insert(vector.end(), v.begin(), v.end());
}
}
RS_Vector RS_VectorSolutions::get(size_t i) const
{
if(i<vector.size())
return vector.at(i);
return {};
}
const RS_Vector& RS_VectorSolutions::operator [] (const size_t i) const
{
return vector[i];
}
RS_Vector& RS_VectorSolutions::operator [] (const size_t i)
{
return vector[i];
}
size_t RS_VectorSolutions::size() const
{
return vector.size();
}
/**
* Deletes vector array and resets everything.
*/
void RS_VectorSolutions::clear() {
vector.clear();
tangent = false;
}
/**
* @return vector solution number i or an invalid vector if there
* are less solutions.
*/
const RS_Vector& RS_VectorSolutions::at(size_t i) const {
return vector.at(i);
}
/**
* @return Number of solutions available.
*/
size_t RS_VectorSolutions::getNumber() const {
return vector.size();
}
/**
* @retval true There's at least one valid solution.
* @retval false There's no valid solution.
*/
bool RS_VectorSolutions::hasValid() const {
for(const RS_Vector& v: vector)
if (v.valid) return true;
return false;
}
void RS_VectorSolutions::resize(size_t n){
vector.resize(n);
}
const std::vector<RS_Vector>& RS_VectorSolutions::getVector() const {
return vector;
}
std::vector<RS_Vector>::const_iterator RS_VectorSolutions::begin() const
{
return vector.begin();
}
std::vector<RS_Vector>::const_iterator RS_VectorSolutions::end() const
{
return vector.end();
}
std::vector<RS_Vector>::iterator RS_VectorSolutions::begin()
{
return vector.begin();
}
std::vector<RS_Vector>::iterator RS_VectorSolutions::end()
{
return vector.end();
}
void RS_VectorSolutions::push_back(const RS_Vector& v) {
vector.push_back(v);
}
void RS_VectorSolutions::removeAt(const size_t i){
if (vector.size()> i)
vector.erase(vector.begin()+i);
}
RS_VectorSolutions& RS_VectorSolutions::push_back(const RS_VectorSolutions& v) {
vector.insert(vector.end(), v.begin(), v.end());
return *this;
}
/**
* Sets the solution i to the given vector.
* If i is greater than the current number of solutions available,
* nothing happens.
*/
void RS_VectorSolutions::set(size_t i, const RS_Vector& v) {
if (i<vector.size()) {
vector[i] = v;
}else{
// RS_DEBUG->print(RS_Debug::D_ERROR, "set member in vector in RS_VectorSolutions: out of range, %d to size of %d", i,vector.size());
for(size_t j=vector.size();j<=i;++j)
vector.push_back(v);
}
}
/**
* Sets the tangent flag.
*/
void RS_VectorSolutions::setTangent(bool t) {
tangent = t;
}
/**
* @return true if at least one of the solutions is a double solution
* (tangent).
*/
bool RS_VectorSolutions::isTangent() const {
return tangent;
}
/**
* Rotates all vectors around (0,0) by the given angle.
*/
void RS_VectorSolutions::rotate(double ang) {
RS_Vector angleVector(ang);
for (auto& vp: vector) {
if (vp.valid) {
vp.rotate(angleVector);
}
}
}
/**
* Rotates all vectors around (0,0) by the given angleVector.
*/
void RS_VectorSolutions::rotate(const RS_Vector& angleVector) {
for (auto& vp: vector) {
if (vp.valid) {
vp.rotate(angleVector);
}
}
}
/**
* Rotates all vectors around the given center by the given angle.
*/
void RS_VectorSolutions::rotate(const RS_Vector& center, double ang) {
const RS_Vector angleVector(ang);
for (auto& vp: vector) {
if (vp.valid) {
vp.rotate(center,angleVector);
}
}
}
void RS_VectorSolutions::rotate(const RS_Vector& center, const RS_Vector& angleVector) {
for (auto& vp: vector) {
if (vp.valid) {
vp.rotate(center, angleVector);
}
}
}
/**
* Move all vectors around the given center by the given vector.
*/
void RS_VectorSolutions::move(const RS_Vector& vp) {
for (RS_Vector& v: vector) {
if (v.valid) {
v.move(vp);
}
}
}
/**
* Scales all vectors by the given factors with the given center.
*/
void RS_VectorSolutions::scale(const RS_Vector& center, const RS_Vector& factor) {
for (auto& vp: vector) {
if (vp.valid) {
vp.scale(center, factor);
}
}
}
void RS_VectorSolutions::scale( const RS_Vector& factor) {
for (auto& vp: vector) {
if (vp.valid) {
vp.scale(factor);
}
}
}
/**
* @return vector solution which is the closest to the given coordinate.
* dist will contain the distance if it doesn't point to NULL (default).
*/
RS_Vector RS_VectorSolutions::getClosest(const RS_Vector& coord,
double* dist, size_t* index) const {
double curDist{0.};
double minDist = RS_MAXDOUBLE;
RS_Vector closestPoint{false};
int pos(0);
for (size_t i=0; i<vector.size(); i++) {
if (vector[i].valid) {
curDist = (coord - vector[i]).squared();
if (curDist<minDist) {
closestPoint = vector[i];
minDist = curDist;
pos=i;
}
}
}
if (dist) {
*dist = sqrt(minDist);
}
if (index) {
*index = pos;
}
return closestPoint;
}
/**
*@ return the closest distance from the first counts rs_vectors
*@coord, distance to this point
*@counts, only consider this many points within solution
*/
double RS_VectorSolutions::getClosestDistance(const RS_Vector& coord,
int counts)
{
double ret=RS_MAXDOUBLE*RS_MAXDOUBLE;
int i=vector.size();
if (counts < i && counts >= 0) i=counts;
std::for_each(vector.begin(), vector.begin() + i,
[&ret, &coord](RS_Vector const& vp) {
if(vp.valid) {
double d=(coord - vp).squared();
if(d<ret) ret=d;
}
}
);
return sqrt(ret);
}
/** switch x,y for all vectors */
RS_VectorSolutions RS_VectorSolutions::flipXY(void) const
{
RS_VectorSolutions ret;
for(const auto& vp: vector)
ret.push_back(vp.flipXY());
return ret;
}
std::ostream& operator << (std::ostream& os,
const RS_VectorSolutions& s) {
for (const RS_Vector& vp: s){
os << "(" << vp << ")\n";
}
os << " tangent: " << (int)s.isTangent() << "\n";
return os;
}