Files
newspark110/lib/engine/rs_constructionline.cpp
Chenwenxuan edac2715f0 init
2024-03-06 14:54:30 +08:00

287 lines
7.3 KiB
C++

/****************************************************************************
**
** This file is part of the LibreCAD project, a 2D CAD program
**
** Copyright (C) 2010 R. van Twisk (librecad@rvt.dds.nl)
** Copyright (C) 2001-2003 RibbonSoft. All rights reserved.
**
**
** This file may be distributed and/or modified under the terms of the
** GNU General Public License version 2 as published by the Free Software
** Foundation and appearing in the file gpl-2.0.txt included in the
** packaging of this file.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
**
** This copyright notice MUST APPEAR in all copies of the script!
**
**********************************************************************/
#include "rs_constructionline.h"
#include "rs_debug.h"
#include "lc_quadratic.h"
#include "rs_math.h"
RS_ConstructionLineData::RS_ConstructionLineData():
point1(false),
point2(false)
{}
RS_ConstructionLineData::RS_ConstructionLineData(const RS_Vector& point1,
const RS_Vector& point2):
point1(point1)
,point2(point2)
{
}
std::ostream& operator << (std::ostream& os,
const RS_ConstructionLineData& ld)
{
os << "(" << ld.point1 <<
"/" << ld.point2 <<
")";
return os;
}
/**
* Constructor.
*/
RS_ConstructionLine::RS_ConstructionLine(RS_EntityContainer* parent,
const RS_ConstructionLineData& d)
:RS_AtomicEntity(parent), data(d) {
calculateBorders();
}
RS_Entity* RS_ConstructionLine::clone() const {
RS_ConstructionLine* c = new RS_ConstructionLine(*this);
c->initId();
return c;
}
void RS_ConstructionLine::calculateBorders() {
minV = RS_Vector::minimum(data.point1, data.point2);
maxV = RS_Vector::maximum(data.point1, data.point2);
}
RS_Vector RS_ConstructionLine::getNearestEndpoint(const RS_Vector& coord,
double* dist) const{
double dist1, dist2;
dist1 = (data.point1-coord).squared();
dist2 = (data.point2-coord).squared();
if (dist2<dist1) {
if (dist) {
*dist = sqrt(dist2);
}
return data.point2;
} else {
if (dist) {
*dist = sqrt(dist1);
}
return data.point1;
}
}
RS_Vector RS_ConstructionLine::getNearestPointOnEntity(const RS_Vector& coord,
bool /*onEntity*/, double* /*dist*/, RS_Entity** entity) const{
if (entity) {
*entity = const_cast<RS_ConstructionLine*>(this);
}
RS_Vector ae = data.point2-data.point1;
RS_Vector ea = data.point1-data.point2;
RS_Vector ap = coord-data.point1;
// RS_Vector ep = coord-data.point2;
if (ae.magnitude()<1.0e-6 || ea.magnitude()<1.0e-6) {
return RS_Vector(false);
}
// Orthogonal projection from both sides:
RS_Vector ba = ae * RS_Vector::dotP(ae, ap)
/ (ae.magnitude()*ae.magnitude());
// RS_Vector be = ea * RS_Vector::dotP(ea, ep)
// / (ea.magnitude()*ea.magnitude());
return data.point1+ba;
}
RS_Vector RS_ConstructionLine::getNearestCenter(const RS_Vector& /*coord*/,
double* dist) const{
if (dist) {
*dist = RS_MAXDOUBLE;
}
return RS_Vector(false);
}
/** @return Copy of data that defines the line. */
RS_ConstructionLineData const& RS_ConstructionLine::getData() const {
return data;
}
/** @return First definition point. */
RS_Vector const& RS_ConstructionLine::getPoint1() const {
return data.point1;
}
/** @return Second definition point. */
RS_Vector const& RS_ConstructionLine::getPoint2() const {
return data.point2;
}
/** @return Start point of the entity */
RS_Vector RS_ConstructionLine::getStartpoint() const
{
return data.point1;
}
/** @return End point of the entity */
RS_Vector RS_ConstructionLine::getEndpoint() const
{
return data.point2;
}
/**
* @return Direction 1. The angle at which the arc starts at
* the startpoint.
*/
double RS_ConstructionLine::getDirection1(void) const
{
return RS_Math::correctAngle( data.point1.angleTo( data.point2));
}
/**
* @return Direction 2. The angle at which the arc starts at
* the endpoint.
*/
double RS_ConstructionLine::getDirection2(void) const
{
return RS_Math::correctAngle( data.point2.angleTo( data.point1));
}
/** return the equation of the entity
for quadratic,
return a vector contains:
m0 x^2 + m1 xy + m2 y^2 + m3 x + m4 y + m5 =0
for linear:
m0 x + m1 y + m2 =0
**/
LC_Quadratic RS_ConstructionLine::getQuadratic() const
{
std::vector<double> ce(3,0.);
auto dvp=data.point2 - data.point1;
RS_Vector normal(-dvp.y,dvp.x);
ce[0]=normal.x;
ce[1]=normal.y;
ce[2]= -normal.dotP(data.point2);
return LC_Quadratic(ce);
}
RS_Vector RS_ConstructionLine::getMiddlePoint() const{
return RS_Vector(false);
}
RS_Vector RS_ConstructionLine::getNearestMiddle(const RS_Vector& /*coord*/,
double* dist, const int /*middlePoints*/)const {
if (dist) {
*dist = RS_MAXDOUBLE;
}
return RS_Vector(false);
}
RS_Vector RS_ConstructionLine::getNearestDist(double /*distance*/,
const RS_Vector& /*coord*/,
double* dist) const{
if (dist) {
*dist = RS_MAXDOUBLE;
}
return RS_Vector(false);
}
double RS_ConstructionLine::getDistanceToPoint(const RS_Vector& coord,
RS_Entity** entity,
RS2::ResolveLevel /*level*/, double /*solidDist*/) const {
RS_DEBUG->print("RS_ConstructionLine::getDistanceToPoint");
if (entity) {
*entity = const_cast<RS_ConstructionLine*>(this);
}
//double dist = RS_MAXDOUBLE;
RS_Vector se = data.point2-data.point1;
double d(se.magnitude());
if(d<RS_TOLERANCE) {
//line too short
return RS_MAXDOUBLE;
}
se.set( se.x/d,-se.y/d); //normalized
RS_Vector vpc= coord - data.point1;
vpc.rotate(se); // rotate to use the line as x-axis, and the distance is fabs(y)
return ( fabs(vpc.y) );
}
void RS_ConstructionLine::move(const RS_Vector& offset) {
data.point1.move(offset);
data.point2.move(offset);
//calculateBorders();
}
void RS_ConstructionLine::rotate(const RS_Vector& center, const double& angle) {
RS_Vector angleVector(angle);
data.point1.rotate(center, angleVector);
data.point2.rotate(center, angleVector);
//calculateBorders();
}
void RS_ConstructionLine::rotate(const RS_Vector& center, const RS_Vector& angleVector) {
data.point1.rotate(center, angleVector);
data.point2.rotate(center, angleVector);
//calculateBorders();
}
void RS_ConstructionLine::scale(const RS_Vector& center, const RS_Vector& factor) {
data.point1.scale(center, factor);
data.point2.scale(center, factor);
//calculateBorders();
}
void RS_ConstructionLine::mirror(const RS_Vector& axisPoint1, const RS_Vector& axisPoint2) {
data.point1.mirror(axisPoint1, axisPoint2);
data.point2.mirror(axisPoint1, axisPoint2);
}
/**
* Dumps the point's data to stdout.
*/
std::ostream& operator << (std::ostream& os, const RS_ConstructionLine& l) {
os << " ConstructionLine: " << l.getData() << "\n";
return os;
}