287 lines
7.3 KiB
C++
287 lines
7.3 KiB
C++
/****************************************************************************
|
|
**
|
|
** This file is part of the LibreCAD project, a 2D CAD program
|
|
**
|
|
** Copyright (C) 2010 R. van Twisk (librecad@rvt.dds.nl)
|
|
** Copyright (C) 2001-2003 RibbonSoft. All rights reserved.
|
|
**
|
|
**
|
|
** This file may be distributed and/or modified under the terms of the
|
|
** GNU General Public License version 2 as published by the Free Software
|
|
** Foundation and appearing in the file gpl-2.0.txt included in the
|
|
** packaging of this file.
|
|
**
|
|
** This program is distributed in the hope that it will be useful,
|
|
** but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
** GNU General Public License for more details.
|
|
**
|
|
** You should have received a copy of the GNU General Public License
|
|
** along with this program; if not, write to the Free Software
|
|
** Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
**
|
|
** This copyright notice MUST APPEAR in all copies of the script!
|
|
**
|
|
**********************************************************************/
|
|
|
|
|
|
#include "rs_constructionline.h"
|
|
|
|
#include "rs_debug.h"
|
|
#include "lc_quadratic.h"
|
|
#include "rs_math.h"
|
|
|
|
RS_ConstructionLineData::RS_ConstructionLineData():
|
|
point1(false),
|
|
point2(false)
|
|
{}
|
|
|
|
RS_ConstructionLineData::RS_ConstructionLineData(const RS_Vector& point1,
|
|
const RS_Vector& point2):
|
|
point1(point1)
|
|
,point2(point2)
|
|
{
|
|
}
|
|
|
|
std::ostream& operator << (std::ostream& os,
|
|
const RS_ConstructionLineData& ld)
|
|
{
|
|
os << "(" << ld.point1 <<
|
|
"/" << ld.point2 <<
|
|
")";
|
|
return os;
|
|
}
|
|
|
|
/**
|
|
* Constructor.
|
|
*/
|
|
RS_ConstructionLine::RS_ConstructionLine(RS_EntityContainer* parent,
|
|
const RS_ConstructionLineData& d)
|
|
:RS_AtomicEntity(parent), data(d) {
|
|
|
|
calculateBorders();
|
|
}
|
|
|
|
RS_Entity* RS_ConstructionLine::clone() const {
|
|
RS_ConstructionLine* c = new RS_ConstructionLine(*this);
|
|
c->initId();
|
|
return c;
|
|
}
|
|
|
|
void RS_ConstructionLine::calculateBorders() {
|
|
minV = RS_Vector::minimum(data.point1, data.point2);
|
|
maxV = RS_Vector::maximum(data.point1, data.point2);
|
|
}
|
|
|
|
RS_Vector RS_ConstructionLine::getNearestEndpoint(const RS_Vector& coord,
|
|
double* dist) const{
|
|
double dist1, dist2;
|
|
|
|
dist1 = (data.point1-coord).squared();
|
|
dist2 = (data.point2-coord).squared();
|
|
|
|
if (dist2<dist1) {
|
|
if (dist) {
|
|
*dist = sqrt(dist2);
|
|
}
|
|
return data.point2;
|
|
} else {
|
|
if (dist) {
|
|
*dist = sqrt(dist1);
|
|
}
|
|
return data.point1;
|
|
}
|
|
}
|
|
|
|
RS_Vector RS_ConstructionLine::getNearestPointOnEntity(const RS_Vector& coord,
|
|
bool /*onEntity*/, double* /*dist*/, RS_Entity** entity) const{
|
|
|
|
if (entity) {
|
|
*entity = const_cast<RS_ConstructionLine*>(this);
|
|
}
|
|
|
|
RS_Vector ae = data.point2-data.point1;
|
|
RS_Vector ea = data.point1-data.point2;
|
|
RS_Vector ap = coord-data.point1;
|
|
// RS_Vector ep = coord-data.point2;
|
|
|
|
if (ae.magnitude()<1.0e-6 || ea.magnitude()<1.0e-6) {
|
|
return RS_Vector(false);
|
|
}
|
|
|
|
// Orthogonal projection from both sides:
|
|
RS_Vector ba = ae * RS_Vector::dotP(ae, ap)
|
|
/ (ae.magnitude()*ae.magnitude());
|
|
// RS_Vector be = ea * RS_Vector::dotP(ea, ep)
|
|
// / (ea.magnitude()*ea.magnitude());
|
|
|
|
return data.point1+ba;
|
|
}
|
|
|
|
RS_Vector RS_ConstructionLine::getNearestCenter(const RS_Vector& /*coord*/,
|
|
double* dist) const{
|
|
|
|
if (dist) {
|
|
*dist = RS_MAXDOUBLE;
|
|
}
|
|
|
|
return RS_Vector(false);
|
|
}
|
|
|
|
/** @return Copy of data that defines the line. */
|
|
RS_ConstructionLineData const& RS_ConstructionLine::getData() const {
|
|
return data;
|
|
}
|
|
|
|
/** @return First definition point. */
|
|
RS_Vector const& RS_ConstructionLine::getPoint1() const {
|
|
return data.point1;
|
|
}
|
|
/** @return Second definition point. */
|
|
RS_Vector const& RS_ConstructionLine::getPoint2() const {
|
|
return data.point2;
|
|
}
|
|
|
|
/** @return Start point of the entity */
|
|
RS_Vector RS_ConstructionLine::getStartpoint() const
|
|
{
|
|
return data.point1;
|
|
}
|
|
|
|
/** @return End point of the entity */
|
|
RS_Vector RS_ConstructionLine::getEndpoint() const
|
|
{
|
|
return data.point2;
|
|
}
|
|
|
|
/**
|
|
* @return Direction 1. The angle at which the arc starts at
|
|
* the startpoint.
|
|
*/
|
|
double RS_ConstructionLine::getDirection1(void) const
|
|
{
|
|
return RS_Math::correctAngle( data.point1.angleTo( data.point2));
|
|
}
|
|
|
|
/**
|
|
* @return Direction 2. The angle at which the arc starts at
|
|
* the endpoint.
|
|
*/
|
|
double RS_ConstructionLine::getDirection2(void) const
|
|
{
|
|
return RS_Math::correctAngle( data.point2.angleTo( data.point1));
|
|
}
|
|
|
|
/** return the equation of the entity
|
|
for quadratic,
|
|
|
|
return a vector contains:
|
|
m0 x^2 + m1 xy + m2 y^2 + m3 x + m4 y + m5 =0
|
|
|
|
for linear:
|
|
m0 x + m1 y + m2 =0
|
|
**/
|
|
LC_Quadratic RS_ConstructionLine::getQuadratic() const
|
|
{
|
|
std::vector<double> ce(3,0.);
|
|
auto dvp=data.point2 - data.point1;
|
|
RS_Vector normal(-dvp.y,dvp.x);
|
|
ce[0]=normal.x;
|
|
ce[1]=normal.y;
|
|
ce[2]= -normal.dotP(data.point2);
|
|
return LC_Quadratic(ce);
|
|
}
|
|
|
|
RS_Vector RS_ConstructionLine::getMiddlePoint() const{
|
|
return RS_Vector(false);
|
|
}
|
|
RS_Vector RS_ConstructionLine::getNearestMiddle(const RS_Vector& /*coord*/,
|
|
double* dist, const int /*middlePoints*/)const {
|
|
if (dist) {
|
|
*dist = RS_MAXDOUBLE;
|
|
}
|
|
return RS_Vector(false);
|
|
}
|
|
|
|
|
|
|
|
RS_Vector RS_ConstructionLine::getNearestDist(double /*distance*/,
|
|
const RS_Vector& /*coord*/,
|
|
double* dist) const{
|
|
if (dist) {
|
|
*dist = RS_MAXDOUBLE;
|
|
}
|
|
return RS_Vector(false);
|
|
}
|
|
|
|
|
|
double RS_ConstructionLine::getDistanceToPoint(const RS_Vector& coord,
|
|
RS_Entity** entity,
|
|
RS2::ResolveLevel /*level*/, double /*solidDist*/) const {
|
|
|
|
RS_DEBUG->print("RS_ConstructionLine::getDistanceToPoint");
|
|
|
|
if (entity) {
|
|
*entity = const_cast<RS_ConstructionLine*>(this);
|
|
}
|
|
//double dist = RS_MAXDOUBLE;
|
|
RS_Vector se = data.point2-data.point1;
|
|
double d(se.magnitude());
|
|
if(d<RS_TOLERANCE) {
|
|
//line too short
|
|
return RS_MAXDOUBLE;
|
|
}
|
|
se.set( se.x/d,-se.y/d); //normalized
|
|
RS_Vector vpc= coord - data.point1;
|
|
vpc.rotate(se); // rotate to use the line as x-axis, and the distance is fabs(y)
|
|
return ( fabs(vpc.y) );
|
|
}
|
|
|
|
|
|
|
|
void RS_ConstructionLine::move(const RS_Vector& offset) {
|
|
data.point1.move(offset);
|
|
data.point2.move(offset);
|
|
//calculateBorders();
|
|
}
|
|
|
|
|
|
|
|
void RS_ConstructionLine::rotate(const RS_Vector& center, const double& angle) {
|
|
RS_Vector angleVector(angle);
|
|
data.point1.rotate(center, angleVector);
|
|
data.point2.rotate(center, angleVector);
|
|
//calculateBorders();
|
|
}
|
|
|
|
void RS_ConstructionLine::rotate(const RS_Vector& center, const RS_Vector& angleVector) {
|
|
data.point1.rotate(center, angleVector);
|
|
data.point2.rotate(center, angleVector);
|
|
//calculateBorders();
|
|
}
|
|
|
|
void RS_ConstructionLine::scale(const RS_Vector& center, const RS_Vector& factor) {
|
|
data.point1.scale(center, factor);
|
|
data.point2.scale(center, factor);
|
|
//calculateBorders();
|
|
}
|
|
|
|
|
|
|
|
void RS_ConstructionLine::mirror(const RS_Vector& axisPoint1, const RS_Vector& axisPoint2) {
|
|
data.point1.mirror(axisPoint1, axisPoint2);
|
|
data.point2.mirror(axisPoint1, axisPoint2);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Dumps the point's data to stdout.
|
|
*/
|
|
std::ostream& operator << (std::ostream& os, const RS_ConstructionLine& l) {
|
|
os << " ConstructionLine: " << l.getData() << "\n";
|
|
return os;
|
|
}
|
|
|
|
|