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We consider the diffraction occurring when light is focused by a lens without spherical aberration through
a planar interface between materials of mismatched refractive indices, which focusing produces spherical
aberration. By means of a rigorous vectorial electromagnetic treatment that was previously developed for
this problem [Török et al., J. Opt. Soc. Am. A 12, 325 (1995)], the diffraction integrals are transformed into
a form that is computable. Time-averaged electric energy density distributions in the region of the focused
probe are numerically evaluated for air–glass and air–silicon interfaces as a function of lens numerical
aperture and probe depth corresponding to a wide range of spherical aberration. Two-dimensional lateral
(x –y) and meridional (x –z) electric energy density plots show how the energy, the size, and the position of
the various axial and lateral maxima changed, providing new information concerning the above two important
optical systems. The treatment also shows that the use of a lens without spherical aberration to focus into a
second material is formally equivalent to the use of a lens with spherical aberration and a reduced solid semi-
angle to focus into a single material.  1995 Optical Society of America
1. INTRODUCTION

In a previous paper1 we obtained a rigorous analytical
solution for the vectorial electromagnetic diffraction oc-
curring when light was focused by a high-aperture lens
through an interface between materials of mismatched
refractive indices. The interface was planar and perpen-
dicular to the optical axis, and the two materials were
homogeneous and isotropic. It was shown for such a sys-
tem that the focusing produces spherical aberration and
that the aberration could be described by a closed ana-
lytical function. Furthermore, the diffraction integrals
obtained were in forms that were considered to be read-
ily computable because each of the three main diffraction
integrals consisted of only a single integral. The aim of
the present work is to show that these integrals can be
numerically evaluated and to obtain results for the time-
averaged electric energy density distributions for this sys-
tem corresponding to a wide range of lens apertures and
probe depths and for different materials.

We initially describe previous work that used numeri-
cal computations for diffraction associated with focusing
by a high-aperture lens into a single homogeneous and
isotropic material with no aberrations present. The ba-
sis of many of the numerical results is due to Wolf,2 who
0740-3232/95/102136-09$06.00 
solved the diffraction problem by using the representation
of angular spectrum of plane waves, the solution obtained
being formally identical to the Debye integral. Richards
and Wolf3 computed electric energy density distributions
in the focal plane of a lens for different apertures and de-
termined the polarization states. Boivin and Wolf 4 com-
puted the two-dimensional structure of the time-averaged
electric energy density in 0± and 45± meridional planes of a
high-aperture focusing system, where 0± indicates the di-
rection of incident polarization, and showed that the lat-
eral resolution (based on the width of the main energy
density maximum) was superior in the 90± meridional
plane than in the 0± plane. Hardy and Treves5 applied
Wolf ’s theory to stigmatic lenses, taking into account
the curvature of the lens surface and the polarization-
dependent effect of transmission on this surface. They
computed contours of time-averaged electric and magnetic
energy density with a particular lens solid semi-angle and
showed that both the distributions in the focal plane were
elliptical in shape.

We now describe previous work that used numerical
computations for diffraction associated with a focusing
system when aberrations were present. Hopkins and
Yzuel6 considered focusing by a lens into a single ma-
terial. They used the Kirchhoff theory with lens aber-
1995 Optical Society of America
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ration (measured as the distance between the reference
sphere and the aberrated wave front), devised a numerical
method to evaluate their integrals, and computed inten-
sity axial line scans for weak spherical aberration. They
showed how spherical aberration distorted the distribu-
tion and shifted the axial focus position. Kant7 showed
how lens aberrations could be incorporated into Wolf ’s
theory2 and obtained solutions for the cases of spherical
aberration, curvature of field, and distortion. He com-
puted electric energy density distributions in the best re-
ceiving plane when the first two aberrations were present
and obtained values for the focus shift as a function of
lens solid semiaperture. Ling and Lee8 considered a sys-
tem in which the aberration was introduced by focus-
ing through an interface into a material with a different
refractive index and solved the diffraction problem by
using the angular spectrum representation. They pre-
sented time-averaged electric energy density distributions
in the focal plane and also along the 0± meridional plane
for weak spherical aberration and determined focus shifts
and considered the effect of materials with various refrac-
tive indices on intensity maxima. However, they used a
semigeometrical optics approach and an approximation to
evaluate their integrals.

Most of the previous computed results for energy dis-
tributions were given as one-dimensional line scans or
two-dimensional contour plots and showed the positions
and the energy densities of the various axial and lateral
maxima and minima in the region of the focused probe.
The present results are given as two-dimensional contour
plots and two-dimensional gray-scale images. The new
aspects of the present work are the use of a rigorous vec-
torial theory, the focusing into two materials of practical
importance, and the consideration of a wide range of fo-
cusing conditions corresponding to a wide range of spheri-
cal aberration produced by the interface focusing.

Numerical computations of the equations obtained by
either formal or analytical solution for such diffraction
systems are difficult to perform because the integrals in-
volved are strongly oscillating functions. Although pro-
cedures for treating such integrals have been proposed,7,9

we directly computed our equations using a cluster of
seven Hewlett Packard Apollo workstations. The pro-
grams were written in FORTRAN, and for integration the
D01DAF NAG (Numerical Algorithm Group, Oxford) sub-
routine was used.

In Section 2 of this paper we summarize our previ-
ous theoretical results and transform the diffraction in-
tegrals into a form suitable for numerical computations.
We present numerical results in Subsection 3.A for an
air–glass interface and an illumination wavelength of l ­
0.6328 mm and in Subsection 3.B for an air–silicon inter-
face and an illumination wavelength of l ­ 1.3 mm. In
Section 4 we discuss and summarize our results. More
detailed results concerning some aspects of the work will
be presented in a subsequent paper.

2. INTEGRAL REPRESENTATION
Consider an optical system of revolution with an optical
axis z as shown in Fig. 1. This system images a point
source, which is situated in the object space at z ­ 2`

and radiates a linearly polarized monochromatic and co-
herent electromagnetic wave. The incident polarization
direction is parallel to the x direction. This wave is in-
cident on a lens of aperture S, which produces a conver-
gent spherical wave in the image space. The origin O of
the sx, y, zd coordinate system is positioned in the second
material, where the Gaussian focus is located. The elec-
tric and magnetic fields are determined at the arbitrary
point P in the focal region. The aperture size and the
distance of P from the aperture are taken to be large com-
pared with the wavelength. In Fig. 1 ŝ1 ­ ss1x, s1y , s1zd
is the unit vector for a typical ray in the first material,
ŝ2 ­ ss2x, s2y , s2zd is the unit vector for a ray in the second
material, and rp ­ sx2, y2, z2d is the position vector point-
ing from O to P. The interface between the first and the
second material is situated at z ­ 2d. The refractive in-
dices of the first and the second material are denoted by
n1 and n2, respectively.

The angle of incidence at the interface is denoted by
f1, and the angle of refraction is denoted by f2. The
unit vectors ŝ1 and ŝ2 and the vector rp (Fig. 1) are given
in spherical polar coordinates by

ŝ1 ­ ssin f1 cos udî 1 ssin f1 sin udĵ 1 scos f1dk̂ , (1)

ŝ2 ­ ssin f2 cos udî 1 ssin f2 sin udĵ 1 scos f2dk̂ , (2)

rp ­ rpfssin fp cos updî 1 ssin fp sin updĵ 1 scos fpdk̂g ,

(3)

where î, ĵ , and k̂ are the unit base vectors of the sx, y, zd
orthogonal system and the spherical polar coordinates r,
f, and u are defined so that r . 0, 0 # f , p, and
0 # u , 2p.

Let ẼsP , td indicate the time-dependent electric field
and let H̃sP , td indicate the time-dependent magnetic field
at P at time t, so that

ẼsP , td ­ RefEsP dexps2ivtdg ,

H̃sP , td ­ RefHsP dexps2ivtdg , (4)

where Re indicates the real part.

Fig. 1. Diagram showing light focused by a lens into two media
separated by a planar interface.
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We showed previously1 that the Cartesian components
of the electric field E2 inside the second material were
given by a combination of the three functions

e2x ­ 2iKfI sed
0 1 I sed
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with f1 and f2 related by Snell’s law. There was a
similar set of equations for the magnetic field. It should
be noted that Eqs. (5) are in a form identical to that given
by Richards and Wolf3 for a single material.

In Eqs. (6) the aberration function C is

Csf1, f2, 2dd ­ 2dsn1 cos f1 2 n2 cos f2d , (7)

and the normalized radial and axial coordinates v and u,
respectively, are

v ­ k1sx2 1 y2d1/2 sin a ­ k1rp sin fp sin a ,

u ­ k2z sin2 a ­ k2rp cos fp sin2 a , (8)

where a is the solid semi-angle of the lens in the first
material, k0, k1, and k2 are the wave numbers in vacuo,
in the first material, and in the second material, respec-
tively, f is the focal length of the lens in vacuo, and l0

is an amplitude factor. The standard expressions were
used for the Fresnel transmission coefficients ts and tp

and for the Bessel functions Jn of the first kind.
For numerical purposes it is advantageous to trans-

form the diffraction integrals of Eqs. (6) to the second
material.11 The general form of the transformed inte-
grals is given by
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where l ­ 0, 1, 2. The transformation also leads to a
redefinition of the normalized coordinates:

v2 ­ k2sx2 1 y2d1/2 sin b ­ k2rp sin fp sin b ,

u2 ­ k2z sin2 b ­ k2rp cos fp sin2 b , (10)

where b is the solid semi-angle in the second material
corresponding to a.

Important conclusions can be drawn from Eqs. (9) and
(10). It is seen from these equations that the diffraction
integrals I T

l su2, v2d describe the focusing of plane waves
by a lens with a solid semi-angle b and with normal-
ized optical coordinates v2 and u2. Hence the optical sys-
tem under consideration behaves in the same way as if
the focusing occurred by a reduced solid semi-angle lens
sn1 , n2 and b , ad, and thus the effective solid semi-
angle of the entire system is decreased. For example,
when focusing occurs from air to glass with a lens possess-
ing a solid semi-angle of 64.2± (numerical aperture 0.9),
the resulting solid semi-angle is 36.9±. It is also clear
that our optical system can be regarded as a focusing
setup in which nonperfect spherical waves emerge from
an aperture situated in the second material. The devia-
tions of this imaginary (nonperfect) spherical surface from
an ideal one are described by the aberration function C.
In our model the imaginary sphere is bounded by indi-
vidual plane waves, and the distortion of the imaginary
sphere can be described by the direction of the plane-wave
normals. The above interpretation of Eq. (9) is inherent
in the Wolf integrals, from which our integral formulas
were derived, as we need to specify only the initial phase
of the individual plane waves with respect to an arbitrar-
ily chosen wave front.

Additionally, it can easily be shown that when the two
exponent expressions in Eq. (9) are written in the argu-
ment of the same exponent, the equation takes a form
identical to that of the original Wolf integral, where the
term aberration function indicates a wave-front devia-
tion with respect to the Gaussian reference sphere. This
means that the integrand of our diffraction integrals of
Eq. (9) is a combination of an aperture (apodization) func-
tion, a term (consisting of the Bessel functions) associated
with lateral coordinates, and an exponential term associ-
ated with the defocus and the phase aberration. Thus we
can consider Eq. (9) as an expression in which the effect
of the aberrating second material is formally transformed
into the lens and the focusing occurs into a homogeneous
material by an imperfect lens.

3. NUMERICAL RESULTS
We performed numerical computations by using our dif-
fraction integrals of Eq. (9) to determine the electric en-
ergy density distributions occurring when red or infrared
light is focused through air into glass or silicon, respec-
tively. The first case is important because focusing the
light of a He–Ne laser into or through a glass layer is com-
mon practice in experimental optics. The second case is
important in material science, in which examinations of
semiconductor slabs and wafers by either the infrared
microscope,12 the scanning infrared microscope,13 or the
confocal scanning infrared microscope14 are increasingly
being performed.
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In the following two subsections we present numeri-
cal results concerning the above two cases for the time-
averaged electric energy density (referred to as electric
energy density) of a lens that obeys Abbe’s sine condi-
tion and for which the incident illumination is linearly
polarized with a direction coinciding with the lateral x
direction. The term probe depth refers to a depth below
the interface (i.e., at positive z positions) at which the
electric energy density is determined, i.e., is probed. For
example, a probe depth of 5 mm means that the electric
energy density is determined at 15 mm from the inter-
face for all the positions of the interface, with respect to
the lens. In particular, to plot an x–z distribution, we
move both the interface and the point of observation (P)
along the z direction to include all axial points necessary.
This consideration corresponds to the most frequent ex-
perimental case, i.e., the electric or magnetic field to be
determined is probed by an object embedded in the second
material, at constant depth below the interface. Axial di-
rection refers in what follows to positive or negative direc-
tions parallel to the optical axis (z), and lateral direction
refers to those directions perpendicular to the optical axis
(see Fig. 1). Although the electric energy density values
are given in arbitrary units, the values all correspond to a
constant incident beam energy, and so the energies in all
the figures in this paper can be directly compared. Axial
coordinates for x–z distributions are plotted so that the
z ­ 0 position coincides with the paraxial focus defined
by Eq. (52) of Ref. 1. When the axial location of the elec-
tric energy maximum does not coincide with the paraxial
focus (which effect is due to spherical aberration), the op-
tical distance between the paraxial focus and the energy
maximum is referred to as the focus shift. In the follow-
ing figures in which the focus shift needs to be considered,
only the shift that is due to diffraction is included, i.e., the
shift that is due to the probe depth is not.

A. Air–Glass Interface
In this subsection all numerical computations were per-
formed for a wavelength of l ­ 0.6328 mm and refrac-
tive indices of n1 ­ 1.0 and n2 ­ 1.5 for the first and
second materials, respectively. In Figs. 2(a)–2(c) electric
energy densities are shown in the x–z plane for numer-
ical apertures of (a) 0.3, (b) 0.6, and (c) 0.9, correspond-
ing to solid semi-angles in air of 17.5±, 36.9±, and 64.2±,
respectively, and in glass of 11.5±, 23.6±, and 36.9±, re-
spectively. The probe depth is 5 mm. The energy den-
sity contours are plotted on a logarithmic scale. The
results show that the electric energy becomes more con-
centrated as the numerical aperture increases, as ex-
pected. On going from a numerical aperture of 0.3 to
0.6, the energy density for the axial maximum increases
by ,153, and on going from 0.3 to 0.9, it increases by
, 453. As the numerical aperture increases, the focus
shift increases but is small. For a numerical aperture of
0.3 the energy distribution is closely symmetrical about
the focal plane. For a numerical aperture of 0.6 it is
slightly asymmetrical, this asymmetry being more pro-
nounced with the lateral subsidiary maxima. For a nu-
merical aperture of 0.9 the distribution is asymmetrical,
with the axial maxima being more pronounced in the posi-
tive z direction and the lateral maxima being displaced in
the positive z direction. The lateral and axial FWHM’s
of the main electric energy maximum are substantially
decreased with respect to those corresponding to numer-
ical apertures of 0.3 and 0.6. At the negative axial di-

(a)

(b)

(c)
Fig. 2. Time-averaged electric energy density distributions in
the x –z meridional plane for a probe depth of 5 mm and for
numerical apertures of (a) 0.3, (b) 0.6, and (c) 0.9. The calcula-
tions are for air sn1 ­ 1.0d and glass sn2 ­ 1.5d and a wavelength
of l ­ 0.6328 mm (He–Ne laser). 2.1E-3 is 2.1 3 1023, and so
on, in this and subsequent figures.
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(a)

(b)

(c)

(d)

(e)

Fig. 3. Time-averaged electric energy density distributions in
the x –z meridional plane for a numerical aperture of 0.9 and
for probe depths of (a) 10, (b) 20, (c) 40, (d) 80, and (e) 160 mm.
The calculations are for air sn1 ­ 1.0d and glass sn2 ­ 1.5d and a
wavelength of l ­ 0.6328 mm (He–Ne laser).
rection local maxima become smaller in electric energy
and local minima become larger; thus the modulation of
subsidiary peaks at the negative axial direction becomes
less pronounced compared with that at the positive axial
direction.

In Figs. 3(a)–3(e) electric energy densities are shown in
the x–z plane for a numerical aperture of 0.9 and probe
depths of (a) 10, (b) 20, (c) 40, (d) 80, and (e) 160 mm.
The electric energy becomes less concentrated as the
probe depth increases. On going from a depth of 5 to
160 mm, for the main maximum the energy density de-
creases by ,133. The focus shift increases and is large.
The axial positions of the lateral subsidiary maxima are
progressively shifted toward the positive z direction, their
structure becomes more complex, and their energy density
increases with respect to the main maximum. It will be
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(a)

(b)
Fig. 4. Axial scans of the time-averaged electric energy density
distribution for numerical apertures of (a) 0.6 and (b) 0.9 as a
function of probe depth from 0 to 280 mm. The calculations
are for air sn1 ­ 1.0d and glass sn2 ­ 1.5d and a wavelength of
l ­ 0.6328 mm (He–Ne laser).

Fig. 5. Time-averaged electric energy density distributions for
a numerical aperture of 0.9 in the focal x –y plane when the
probe depth is 160 mm. The calculations are for air sn1 ­ 1.0d
and glass sn2 ­ 1.5d and a wavelength of l ­ 0.6328 mm (He–Ne
laser).
shown by direct computations in the subsequent paper
that the FWHM of the main energy maximum increases
with the probe depth, the effect being greater in the axial

(a)

(b)

(c)
Fig. 6. Time-averaged electric energy density distributions in
the x –y meridional plane for a probe depth of 5 mm and for
numerical apertures of (a) 0.3, (b) 0.6, and (c) 0.9. The calcula-
tions are for air sn1 ­ 1.0d and silicon sn2 ­ 3.5d and a wavelength
of l ­ 1.3 mm (infrared laser).
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(a)

(b)

(c)

(d)

(e)

Fig. 7. Time-averaged electric energy density distributions in
the x –z meridional plane for a numerical aperture of 0.9 and
for probe depths of (a) 10, (b) 20, (c) 40, (d) 80, and (e) 160 mm.
The calculations are for air sn1 ­ 1.0d and silicon sn2 ­ 3.5d and
a wavelength of l ­ 1.3 mm (infrared laser).
direction than in the lateral direction, as can be seen from
Fig. 3.

In Fig. 4 axial electric energy density line scans are
plotted (horizontal axis) for probe depths of 10–280 mm
(vertical axis). The gray levels are plotted on a linear
scale, and so only the higher density regions are revealed.
For a numerical aperture of 0.6 [Fig. 4(a)], on going from
a probe depth of 0 to 120 mm, the energy density in the
main maximum decreases by , 43. A secondary axial
maximum in the positive z direction occurs at a depth of
120 mm. This maximum separates from the main maxi-
mum at 200 mm, where a third axial maximum occurs.
For a numerical aperture of 0.9 [Fig. 4(b)] the effect of
the probe depth is more pronounced than that for a nu-
merical aperture of 0.6. On going from a probe depth of
0 to 120 mm, the energy density in the main maximum
decreases by , 63, being initially higher and then lower
than that for a numerical aperture of 0.6. Secondary and
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third maxima in the positive z direction occur as the probe
depth increases.

In Fig. 5 the electric energy density distribution in the
focal (x–y) plane (at the maximum of the energy density)
is shown for a probe depth of 160 mm and a numerical
aperture of 0.9. Compared with the well-known Airy dis-
tribution, the first minimum of the energy density distri-
bution is increased, above zero, and the second and third
maxima are also increased. The first and second min-
ima occur at x ­ 1.3 and 3.1 mm, respectively, and the
second maximum occurs at x ­ 2.1 mm. The correspond-
ing values for the Airy disk in this case are 0.67, 1.17,
and 0.87 mm, respectively. The distribution is slightly
asymmetrical in the x and y directions.

B. Air–Silicon Interface
In this subsection all numerical computations were per-
formed for a wavelength of l ­ 1.3 mm and refractive
indices of n1 ­ 1.0 and n2 ­ 3.5 for the first and the sec-
ond material (silicon), respectively. In Figs. 6(a)–6(c)
electric energy densities are shown in the x–z plane for
numerical apertures of (a) 0.3, (b) 0.6, and (c) 0.9, re-
spectively, corresponding to solid semi-angles in silicon
of 4.9±, 9.9±, and 14.9±, respectively. The probe depth is
5 mm. These energy densities for silicon show the same
trends as those for glass of Fig. 2. However, the energy
concentration is less, and the focus shift is larger. The
ratio of the energy density in the main maximum for sili-
con and glass, corresponding to numerical apertures 0.3,
0.6, and 0.9, is in all three cases ,0.055. This small
value is due partly to a worse energy concentration
because of the smaller solid semi-angle in the silicon
and partly to a larger amount of light reflected at the
air–silicon interface.

For a numerical aperture of 0.3 the x–z electric energy
density distribution is closely symmetrical about the focal
plane, and only a small focus shift occurs. No effect of in-
terface focusing is apparent. For a numerical aperture of
0.6 the energy concentration is increased, and subsidiary
axial minima and maxima occur. Comparison of the cor-
responding distributions for Figs. 2 and 6 shows that the
relative energy densities at the subsidiary maxima are ap-
proximately the same for both air–glass and air–silicon
focusing. For a numerical aperture of 0.9 the lateral and
axial FWHM’s of the main electric energy maximum are
decreased, similar to the result of the corresponding case
of air–glass, and the effect of interface focusing starts
to dominate, with the subsidiary lateral maxima being
shifted toward the positive axial direction. This asym-
metry about the focal plane is more pronounced for the
subsidiary axial maxima.

In Figs. 7(a)–7(e) electric energy densities are shown in
the x–z plane for a numerical aperture of 0.9 and probe
depths of (a) 10, (b) 20, (c) 40, (d) 80, and (e) 160 mm.
The energy density distributions follow the same trends
as those for the corresponding distributions for air–glass
of Fig. 3. The lateral subsidiary maxima are progres-
sively shifted toward the positive axial direction.

Axial electric energy density scans are plotted as a
function of probe depth for silicon in Figs. 8(a) and 8(b),
corresponding to numerical apertures of 0.6 and 0.9,
respectively. For a numerical aperture of 0.6 the energy
density maximum is almost maintained for a probe depth
range of 0–280 mm, the peak value decreasing by only
,1.73. Subsidiary axial peaks occur on both positive
and negative sides of the main peak, with the positive
peak being separated from the main peak at small probe
depths. For a numerical aperture of 0.9 the energy den-
sity maximum decreases rapidly with increasing probe
depth. For the probe depth range of 0–280 mm the
maximum energy decreases by , 63. The focus shift is
not a linear function of the probe depth, as is the case for
a numerical aperture of 0.6. An axial subsidiary maxi-
mum occurs in the positive axial direction at a probe
depth of , 40 mm, and this progressively becomes more
separated from the main maximum as the probe depth
increases.

The electric energy density distribution in the focal
plane (x–y) is shown in Fig. 9 for a probe depth of 160 mm
and a numerical aperture of 0.9. The second maximum
of the distribution is narrower, and the third maximum
is ,1.73 higher, than those in the case of glass (Fig. 5).
The distributions are only slightly asymmetrical about
the optical axis, the effect being less than that for glass
because of the smaller effective solid semi-angle in silicon.

(a)

(b)
Fig. 8. Axial scans of the time-averaged electric energy density
distribution for numerical apertures of (a) 0.6 and (b) 0.9 as a
function of probe depth from 0 to 280 mm. The calculations
are for air sn1 ­ 1.0d and silicon sn2 ­ 3.5d and a wavelength
of l ­ 1.3 mm (infrared laser).
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Fig. 9. Time-averaged electric energy density distribution for
a numerical aperture of 0.9 in the focal (x –y) plane when the
probe depth is 160 mm. The calculations are for air sn1 ­ 1.0d
and silicon sn2 ­ 3.5d and a wavelength of l ­ 1.3 mm (infrared
laser).

4. SUMMARY AND CONCLUSIONS
We previously obtained a rigorous mathematical solu-
tion for the diffraction occurring when light was focused
by a lens without spherical aberration through a pla-
nar interface between materials of mismatched refrac-
tive indices, which produced spherical aberration. In the
present work the diffraction integrals were transformed
into a form that was computable. Time-averaged elec-
tric energy density distributions in the region of the fo-
cused probe were numerically evaluated for air–glass and
air–silicon interfaces and a wide range of conditions, and
consistent results were obtained.

The results showed that as the numerical aperture of
the lens increased, the energy concentration increased
and the size of the main maximum decreased. As either
the probe depth or the refractive index of the second mate-
rial increased, the opposite behavior occurred. As either
the numerical aperture, the probe depth, or the refrac-
tive index of the second material increased, in general
the focus shift of the main maximum increased and the
energy distributions became asymmetrical, with the ax-
ial and lateral maxima moving in the positive z direction.
Quantitative data for the electric energy densities, sizes,
and positions of the energy maxima were obtained. The
results showed, for example, that for a numerical aper-
ture of 0.9, on going from a probe depth of 5 mm in glass
to 160 mm in silicon, there was still a well-defined main
maximum, but the axial width was increased ,3.53 and
the electric energy density decreased by ,4.53.

The transformed diffraction integrals showed that the
use of a lens without spherical aberration to focus into a
second material was formally equivalent to the use of a
lens with spherical aberration to focus into a single mate-
rial. This constitutes a rigorous proof that the spherical
aberration arising from focusing into a second material,
for each particular depth, could be precisely compensated
by the use of an additional correction lens that introduces
an appropriate amount and sign of spherical aberration
into the system.
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