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The diffraction of electromagnetic waves for light focused by a high numerical aperture lens from a first
material into a second material is treated. The second material has a different refractive index from that
of the first material and introduces spherical aberration. We solve the diffraction problem for the case of a
planar interface between two isotropic and homogeneous materials with this interface perpendicular to the
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optical axis.
wave equation.

The solution is obtained in a rigorous mathematical manner, and it satisfies the homogeneous
The electric and magnetic strength vectors are determined in the second material. The

solution is in a simple form that can be readily used for numerical computation. A physical interpretation
of the results is given, and the paraxial approximation of the solution is derived.

1. INTRODUCTION

The structure of focused electromagnetic waves has been
studied by a number of authors. Of particular interest
from both the theoretical and practical points of view
is the diffracted-light distribution in the region of focus
when light is focused by a glass lens. The results of such
investigations have helped in the design of better objective
lenses, especially those with high numerical apertures.

Focusing through materials of mismatched refrac-
tive indices has attracted particular interest because of
microscopy applications in the biological and material
sciences. Microscope objective lenses have long been
manufactured with aberration correction for certain but
fixed penetration depths, e.g., lenses to be used with a
cover glass for biological applications. Microscope ob-
jective lenses have recently been produced that provide
continuously variable correction for spherical aberration
introduced by off-axis propagation of light through ma-
terials of different refractive indices. Nevertheless, the
importance of investigations directed at a better under-
standing of high aperture focusing is still great, and this
demand is increasing, especially with new material sci-
ence applications.

The literature that deals with the general focusing
problems of electromagnetic waves is well established.
In an early paper Wolf! treated high aperture focusing of
electromagnetic waves in a single homogeneous material.
The starting point of his elegant theory was the represen-
tation of the angular spectrum of plane waves, from which
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integral formulas similar to the Debye integral? were
obtained. Wolf and Li® subsequently showed that this
approach was valid for systems that satisfied the high-
aperture condition. Although, during the derivation of
his formulas, Wolf! made a number of approximations,
his transformed integral formulas were formally identi-
cal to Luneburg’s* representation of the Debye integral,
which Luneburg had previously shown to be an exact so-
lution of the homogeneous wave equation. Luneburg’s
formulation is valid for an idealized problem, i.e., when
the probe function and the field to be determined have
the same boundary values at infinity as their geometrical
optics solution. Kant® recently showed how Wolf’s inte-
gral formulas could be used when (Seidel) lens aberrations
were present in the optical system.

The first paper that dealt with the focusing of electro-
magnetic waves into mismatched refractive index mate-
rials was by Gasper et al.,® who considered an arbitrary
electromagnetic wave as it traversed a planar interface.
They also used the representation of the angular spec-
trum of plane waves and considered the focusing prob-
lem for isotropic homogeneous media. For a treatment of
diffraction in anisotropic materials the reader is referred
to Stamnes and Sherman.”® Gasper et al.® derived a
rigorous solution of the problem and its asymptotic ap-
proximation and gave expressions for the electric and
magnetic fields. However, because of the complexity of
their theory, the use of their formulas for the computation
of the electromagnetic field near focus was not practical in
most cases. Ling and Lee? treated the focusing of electro-
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magnetic waves through an interface. A boundary condi-
tion in the form of a current distribution was used as the
starting point, and the representation of the angular spec-
trum of plane waves was applied. In a semigeometrical
approach, with the use of the stationary-phase method,
expressions were obtained for the electric and magnetic
fields. However, Ling and Lee used approximations to
obtain their integral formulas. Ji and Hongo!® treated
the different problem of a point source and a spheri-
cal dielectric interface, using Maslov’s method to obtain
the electric field in the focal region. Although the final
equations showed the same general form as those of the
present paper, they could not be applied to the present
problem. A comprehensive treatment of different focus-
ing theories was later given by Stamnes.!!

In a recent paper Hell et al.'? considered the focusing
problem for mismatched refractive index materials using
the Fresnel—Kirchhoff integral. They decomposed the
incident electric vector into s- and p-polarized parts and
also calculated the effect of spherical aberration on the
image formation for a confocal fluorescence microscope.
However, the integral formula that they used is derived
from Green’s theorem, which requires the continuity of
the field and its first and second derivatives within and
on the boundary of the area of integration; this is not the
case for the normal component of the electric field and
the tangential component of the magnetic field, and so
the final integral formulas obtained may not be rigorously
correct.

The purpose of this paper is to extend Wolf’s treatment
of the diffraction problem for the case when an electro-
magnetic wave is focused in a single medium of propaga-
tion to the case when light is focused by a high-aperture
system into a bulk specimen that has a refractive index
different from that of the medium of propagation and in-
troduces a considerable amount of spherical aberration.
The starting point of our treatment is Wolf’s integral for-
mulas, with which we derive the electromagnetic field just
before the interface between the two media. The field is
then traversed across the interface by application of the
Fresnel refraction law to the individual plane waves inci-
dent upon the interface. The field so derived just after
the interface is used as the boundary condition for a sec-
ond set of integral formulas corresponding to a superposi-
tion of plane waves, which represent the field inside the
second medium. In this way the diffraction problem is
solved in a rigorous mathematical manner, and the solu-
tion satisfies the homogeneous wave equation. We also
obtain formulas for the strength vectors in the second ma-
terial in a form more generally applicable than that of
those previously published.

In our calculations the spherical aberration is intro-
duced by the specimen rather than by an aberration
function related to the lens. The reason is that mod-
ern high-performance lenses are generally well corrected
for spherical aberration. Therefore, in considering a real
optical system, we feel justified in the assumption of a
perfect spherical wave emerging from the lens and con-
verging toward the Gaussian focus point (with no spheri-
cal aberration). Although strong spherical aberrations
can be treated by geometrical optics successfully describ-
ing the main features of the focal region (e.g., caustic and
circle of least confusion), the fine structure and the elec-
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tromagnetic properties (e.g., polarization and energy flow)
of the field can be described only by a full electromagnetic
treatment. This becomes increasingly important when
the field so calculated is to be applied to wave scatter-
ing by small objects situated close to the focus and whose
size is comparable with that of the wavelength, e.g., in
biological and material science applications.

The presentation of our paper is as follows: In
Subsection 2.A we derive the integral representation
of the electromagnetic field in the image space. In
Subsection 2.B we decompose the electric and mag-
netic vectors as each traverses the optical system. In
Subsection 2.C we make use of the above results and give
simplified formulas for the electric and magnetic fields in
the second material. Finally, in Subsections 2.D and 2.E
we consider the physical interpretation of our formulas
and give a paraxial approximation of our solution.

2. PROBLEM, FORMULATION,
AND SOLUTION

A. Integral Representation
Consider an optical system of revolution with an optical
axis z as shown in Fig. 1. This system images a point
source that is situated in the object space at z = —o and
radiates a linearly polarized monochromatic and coherent
electromagnetic wave. This wave is incident upon a lens
of aperture X that produces a convergent spherical wave
in the image space. The origin O of the (x, y, z) coor-
dinate system is positioned at the Gaussian focus. The
electric and magnetic fields are determined at the arbi-
trary point P in the focal region. The aperture size and
the distance of P from the aperture was taken to be large
compared with the wavelength. In Fig. 1 and what fol-
lows, § = (sy, sy, s;) is the unit vector along a typical ray
in the image space and r, = (x, y, z) is the position vec-
tor pointing from O to P.

Let E(P, ¢) indicate the time-dependent electric field
and H(P, ¢) indicate the time-dependent magnetic field
at P at time ¢, so that

E(P, t) = Re[E(P)exp(—iwt)],
H(P, t) = Re[H(P)exp(—iwt)], 1)

where Re indicates the real part.

Fig. 1. Diagram showing light focused by a lens into a single
medium.
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In a homogeneous image space the time-independent
electric and magnetic fields can be represented as a super-
position of plane waves,? and we use the form developed
by Wolf!:

EP) = —% [fn M exp{ik[®(sy, 5,) + § - 1, ]}

z

X ds,dsy, (2)

2 b X .
) - 28 [[ P o ipais,, o) + 50 x, )

z

X ds,ds,, 3

where ®(s,, s,) is the aberration function (describing the
optical path difference between the aberrated and the
spherical wave front along §), a and b are the electric
and magnetic strength vectors, respectively, of the unper-
turbed electric and magnetic fields in the exit aperture 3,
k is the wave number, and () is the solid angle formed by
all the geometrical optics rays (and which is therefore a
limit for all the § unit ray vectors).

Before we proceed with the formulation, it is worth
mentioning that Eqs. (2) and (3) represent a summation of
the plane waves (unlike the Fresnel—Kirchhoff integral)
that are leaving the aperture. It is also evident that the
electric and magnetic fields, as represented by Egs. (2)
and (3), do not depend on the particular wave front within
the solid angle () over which the integration is performed.
This statement can be proved in a rigorous mathemati-
cal manner.* Equations (2) and (3) also show that the
phase factor (apart from the aberration function) is the
scalar product of the vectors § and r,. It follows from
the above that the phase factor expresses the optical path
difference between wave fronts going through the point P
and the Gaussian focus O, unlike the Fresnel-Kirchhoff
integral, for which the phase factor is proportional to the
full optical path from the aperture to P.

In this section henceforth we shall not present the
derivation of the formulas corresponding to the magnetic
field because, apart from the strength vectors, Egs. (2)
and (3) are in the same form.

The case corresponding to Fig. 1, but for an image space
consisting of materials 1 and 2 with refractive indices
n, and ny, respectively, separated by a planar interface
perpendicular to the optical axis, is shown in Fig. 2. The
origin O is again positioned at the Gaussian focus. We
reformulate Eq. (2) as follows. In material 1 and at the
interface (z = —d) the incident electric field is given by

_iky ﬂ W (81)explika(siex
27 (03]

+ sy — si.d)]dsi.dsyy, 4)

Ei(x,y, —d) =

where subscripts 1 and 2 denote values corresponding to
regions with materials 1 and 2, respectively, the objective
lens is taken to be aberration free [®(s1,, s1,) = 0], and

a(slxy sly) X

S1z

WO(s,) = (5)
To describe the field in the second material, we assume
that each plane wave component refracting at the inter-
face obeys Fresnel’s refraction law, and the resulting field
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is constructed as a superposition of refracted plane waves.
If the amplitude of the plane waves incident upon the in-
terface is described by W, then the amplitude of the
transmitted plane waves in the second material is a lin-
ear function of W, i.e.,

T(2)w(2) , (6)

where the operator T is a function of the angle of inci-
dence and n; and ny. The transmitted field in the second
material at the close vicinity (z = —d + §) of the inter-
face is given by

Extw, v, ~d) = —52 [ [ TOWO s explity(s1n
1

+ s1,Y — s1zd)]dsi.dsy, (7)

when 6 — 0. We represent the field inside the second
material again as a superposition of plane waves. This
representation is a solution of the time-independent wave
equation and can be written as

E2(rp) = o

f f FO(3,)explikads - Tp)dspdss, . (8)
Q9

We must determine the function F©(3,), and for this we
shall make use of Eq. (7), which represents a boundary
condition for Eq. (8). Furthermore, we shall establish
the relationship between §; and Ss.

It is evident from the vectorial law of refraction,

k2§2 - k1§1 = (kz COoS (]52 - kl COoS ¢1)u, (9)

where u represents the normal of the interface, ¢; =
(§17 u)} and ¢2 = (§27 u)7 that
kaSsy = kis1y, kassy = kisiy. (10)

In what follows, we shall give a solution for Eq. (8) with
the boundary condition [Eq. (7)].

u

—
interface
z=-d

ny

Fig. 2. Diagram showing light focused by a lens into two media
separated by a planar interface.
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As a result of a coordinate transformation and setting
85 = f(81), Eq. (8) yields

B(r,) = — o2 f F (8p)exp(ikosy - T,)

X Jo(Slx, 81y} Sox, S2y)dsicdsyy, (11)

where J is the Jacobian of the coordinate transformation:

obtained by the use of Egs. (10). Equation (11) satisfies
the boundary condition represented by Eq. (7) when

F (8, §5) = <%)T(e) et ) exp[ —id(kis1; —

S1z
(12)

On substituting from Eq. (12) into Eq. (11), we obtain the
electric field in the second material:

ik22 f T(e) a(slx, Sly)
27Tk1 (31 S1z

X exp[—id(k151. — k2S3.)]exp(ikass.2)

X expliki(s1ex + s1,y)]ds1.ds1y . (13)

Ex(x,y,2) = —

The same procedure yields a similar expression for the
magnetic vector:

lk2 ff b(slx, sly)
HZ(x Yy, 2 27Tk1 o L
X exp[—id(k1s1. — kZSZZ)]eXP(ik282ZZ)
X expliky(sipx + s1,y)]ds1 dsyy (14)

From the above it also follows that in Eqs. (13) and (14)
we have

9 2 1/2 2 1/2
n 2 2
S9, 1——+—le 1__(81x +sly) .
ny? ny?

ng?
(15)

It is important to emphasize that, since both the bound-
ary condition represented by Eq. (7) and the integral
representation [Eq. (8)] are exact solutions of the homo-
geneous wave equation, our formulas for the electric vec-
tor [Eq. (13)] and the magnetic vector [Eq. (14)] in the
second material also satisfy the homogeneous wave equa-
tion. Therefore we have successfully obtained a consis-
tent extension of Wolf’s solution in the second material.
We shall show below in Subsection 2.E that the parax-
ial approximation of Eq. (13) yields the well-known ax-
ial distribution'® for one material, and it also correctly
predicts the axial position of the Gaussian focus for two
materials.

B. Electric and Magnetic Strength Vectors

The determination of the electric and magnetic strength
vectors for a single medium of propagation was described
previously.!* Now we obtain these vectors for a plane po-
larized wave incident upon the lens, and a material whose
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refractive index is different from that of the medium of
propagation is placed into the image space. The mate-
rial is taken to be isotropic and homogeneous and to have
an optically smooth planar surface that is perpendicu-
lar to the optical axis. For our decomposition the usual
assumptions are made, namely, that the electric vector
maintains its direction with respect to a meridional plane
and the electric vector remains on the same side of a
meridional plane on passing through the system.

For the optical system under consideration we denote
the angle of incidence on the interface by ¢; and the angle
of refraction by ¢3. The unit vectors §; and §; and the
vector r, (Fig. 2) are given in spherical polar coordinates

by
$1 = (sin ¢1)(cos 0)i + (sin ¢1)(sin 8)] + (cos ¢p1)k, (16)
= (sin ¢2)(cos )i + (sin ¢»)(sin )] + (cos pa)k, (17)

r, =ry[(sin ¢,)(cos ﬁp)f + (sin ¢,)(sin 0},)}' + (cos ¢p)l;,],
(18)

where i, }', and % are the unit base vectors of the (x, ¥, 2)
orthogonal system and the spherical polar coordinates
r, ¢, and 0 are defined so that r > 0,0 < ¢ < 7, and
0 =6 <27. The coordinate system is chosen so that the
y component of the incident electric vector is zero. For
the incident electric vector E© in front of the lens we have

Eo
EO=|o0
0

For a treatment of the refraction that occurs at the in-
terface of the mismatched materials it is convenient to
decompose the electric vector into s- and p-polarized vec-
tor components E; and E,, respectively, and to rotate the
coordinate system so that the new coordinate system will
contain components in the ( p, s, {) system. This coordi-
nate system is defined in such a way that E; = 0. The
electric vector components E( p.s,0) after the lens are then
in the form

E()., = A$1)P'LRE}, ., 19)

where A(¢1) is an amplitude function (defined below),
the matrix R describes the coordinate transformation for
rotation around the z axis,

cosf sinfh O
R=|—-sinf cos6d O |- (20)
0 0 1

the matrix L describes the changes in the electric field as
it traverses the lens,
cos ¢1 0 sin ¢y
—sin ¢;1 0 cos ¢1
and the matrix P describes the coordinate system rota-
tion that generates E; and E, components with E;, = 0,
cos ¢;1 0 —sin ¢y
PYV=] 0 1 0 . (22)
sin ;1 0 cos ¢
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It is interesting to note that in our case, when E® = 0,
the operations by L and P? cancel out.
The electric field in the second material, E®, is given by

E(,. =R [P?®]'IE[,,, (23)
where the matrix I describes the effect of the interface,
™ 0 0
I=(0 7 0 | (24)
0o 0 7,

in which 7, and 7, are the Fresnel coefficients,

2 sin ¢g cos ¢,

sin(¢y + ¢a)cos(ds — d2)
(25)

, =2sin¢2c0s b1 ,
° sin(¢1 + ¢2) P

the matrix [P®]! describes the rotation of the coordinate
system required to return it to the (p, s, z) system,

cos ¢y 0 sin ¢
[PP] 1 = 0 1 0 , (26)
—sin ¢o 0 cos ¢

and the matrix R™! describes the inverse rotation around
the z axis.

From Eqs. (19)—(21) and (23) we obtain the components
of the electric vector in the second material on setting
E() = 1:

Tp €OS ¢y cos? 6 + 7, sin® @
Eg?yz) = A(¢$1)| 7, cos ¢g sin 6 cos § — 7, sin 0 cos 6
—7, sin ¢y cos 0
(27)

The function A(¢;) can be regarded as an apodization
function that depends on the lens used in imaging.
Richards and Wolf' showed that when the system obeys
Abbe’s sine condition, i.e., is aplanatic, then

A(¢1) = flo cos™ ¢y, (28)

where f is the focal length of the lens in vacuo and I, is
an amplitude factor. Otherwise, this function can take
different forms.!!

Having derived the electric vector Eg?y,z), we can write
the electric strength vector ¢ as

c=TWa=E®, (29)
The magnetic strength vector d is then given by
12
€
d=<—2) s Xe, (30)
M2

where us is the permeability and e; is the permittivity of
the second material. The magnetic strength vector from
Eqgs. (17), (27), (29), and (30) is given by

1/2
d= <3> A(py)
M2

—7p €os 0 sin § + 7, sin 6 cos 6 cos ¢o
X 7, cos? 0 + 7, sin® 0 cos ¢ - (31)

—7s sin 6 cos ¢o

We note that, for the special case ¢1 = ¢, €1 = €2 = 1, and
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m1 = g = 1 (in the CGS unit system), Eqgs. (27) and (31)
reduce to the electric strength vector given by Richards
and Wolf,!* as they should.

C. Electric and Magnetic Field Vectors

First we formulate the expressions needed to simplify
Eqgs. (13) and (14). We transform the integral variables
dsi, and ds;, to the spherical polar coordinate system.
The Jacobian of the transformation is

Jd, =sin ¢4 cos ¢1;

thus
dslxdsly = sin ¢1 Cos ¢1d¢1d0 (32)
We define

K = n; sin ¢; sin ¢, cos(6 — 0,)
+ ngy cos ¢z cos ¢, (33)
V(ph1, pa, —d) = —d(ny cos ¢ — ny cos ¢s). (34)

So far we have constructed the quantities that we require
to determine the electric and magnetic vectors. With the
help of the above results we can rewrite Eqgs. (13) and
(14) to express the electric (E2) and magnetic (Hy) vectors
inside the second material:

b2
Eulry, ~d) = g [ [ etd1, 92,0)

X expliko[ryx + ¥(d1, do, —d)]}
X sin ¢1d¢p1d6, (35)

721':‘;2; [[01 d(¢1, ¢9, 0)

X expliko[rpx + Vb1, ¢2, —d)]}
X sin ¢1d¢1d0, (36)

Hy(rp, —d) =

where k( indicates the wave number in vacuo. On sub-
stituting from Egs. (27), (29), (31), and (32) into Egs. (35)
and (36), changing the integration limits, and assuming
that the system obeys the sine condition [Eq. (28)], we
obtain the following expressions for the electric-field com-
ponents:

. a 27
e =i [T (cos 6160 9)

X [(mp cos ¢o + 75) + (cos 20)(7, cos ¢o — 75)]
X exp{iko[rpx + V(d1, 2, —d)]}d¢p1d6,

. a 2
€3, = +§ fo [0 (cos ¢1)*2(sin ¢1)(sin 26)

X (1, cos ¢g — T4)

X expliko[rpk + W(d1, ¢2, —~d)]}d¢1d6,

K a 27 . .
€9, = flﬂ_ f [ (cos ¢1)"*(sin ¢1)7, sin ¢ cos 6
o Jo

X expliko[r,k + ¥(d1, po, —d)}dep1d0, 37
where
_ kflo _ mna®flo
2k1 /\n1
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We also obtain the following expressions for the magnetic-
field components:

21
o =+ [ [ (cos @) (sin gu)(sin 26)

X (Ts cos ¢y — Tp)
X expliko[r,k + V(d1, do, —d)]}d1db,

2
hgy = lKnZ f f (cos ¢1)"*(sin ¢1)

X [(Tp + 75 €oS ¢2) + (7, + 75 cos p2)(cos 20)]
X expliko[r,k + V(d1, do, —d)]}d1db,

. a 2
ha. = *ﬂinz fo fo (cos ¢1)"*(sin ¢1)7, sin ¢ sin 6
X expliko[r,k + V(d1, P2, —d)]}d¢1d0, (38)

where we assumed that us = 1 and set « to be the angular
semiaperture of the lens. The integration in Egs. (37)
and (38) can be carried out'* with respect to 6, and from
the result the electric- and magnetic-field components
can be expressed as the combination of two sets of three
integrals, Iy, I, and Is:

es, = —1K|[I, %9 + IZ(E) cos(26,)],
ey = fiKIZ sin(26,),
= —2KI” cos 0,, (39)
hoy = —iKnoIy” sin(20,),
hoy = —iKng[Iy - Iz(h) cos(26,)],
ho, = —2Kn211 sin 6,, (40)

where 6, is defined in Eq. (18) and we have put ny, = /e,.
After we substitute the normalized optical coordinates

v="Fki(x?+ y)2 sin a = kirp sin ¢, sin «,
u=kyz sin? @ = kar), cos ¢, sin? a (41)

into Eqgs. (37) and (38), the integrals I, I;, and I, are
given by

- fo " (cos ¢1)"2(sin dr)explikoV (i, b, —d)]
v sin ¢1>

X (15 + 7p cos ¢2)J0( sin o

X exp( —Lus;lozs ¢ ) do,

a

- fo " (cos §1)"2(sin pr)explikoV (s, b, —d)]

X 7p(sin ¢2>Jl< ”:].’;‘fl)exp< 7 ¢2)d¢1,

Sln a
- fo " (cos §1)"2(sin pr)explikoV (s, b, —d)]
v sin ¢1>

sin «

X (13 — 7p cos ¢2)J2<

n- a
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- fo " (cos 1) (sin ¢r)expliko¥ (b1, da, —d)]
v sin ¢1>

sin «

X (1, + 75 cOS ¢2)J0(
x p(_¢)d¢
sin- o

(h)

L= foa (cos ¢1)"*(sin ¢p1)exp[iko W (h1, b, —d)]

X 7,(sin ¢2>J1( ”ss;fjl)exp< fu C“fz)dqsl,

sm

- fo " (cos $1)"2(sin dr)explikoV (s, b, —d)]

<y = o cos g o)
X exp( Hson sty ) dgr, 43)
sm- o

where ¢/, is the Bessel function of the first kind, of order .
Equations (39), (40), (42), and (43) conclude our solution
of the problem. It should be noted that, for n; = ns =1
(therefore ¢ = 1 and d = 0), Egs. (42) and (43) reduce to
19 = IW = [, which are then identical to the correspond-
ing equations of Richards and Wolf.'* Therefore our for-
mulation of the vector diffraction theory with spherical
aberration introduced by an interface between two mate-
rials of mismatched refractive indices is consistent with
previous results derived for the nonaberrated case.

We can see from Egs. (42) and (43) that the time-
independent electric and magnetic fields can be described
not by only one set of integral functions but rather by
two such sets. The reason is that the electric and mag-
netic vectors are orthogonal with respect to each other
and the polarization-dependent refraction at the interface
acts differently on different electric and magnetic vector
directions. It is emphasized, however, that all the laws
that describe the transition of these two vectors through
the system are essentially the same, and the difference be-
tween the two sets of integrals does not originate from the
nature of the wave (whether it is an electric or a magnetic
wave) but rather depends on whether the wave incident
upon the interface possesses p or s polarization.

D. Physical Interpretation

Although the formal solution of our problem has been
concluded by Egs. (39) and (40), we recall here Eq. (13)
for an analysis of our results. This latter equation can
be rewritten in the form

Eox, y, 2) = K’ f  Wils, s1,)
1

X expli2w(s1.'x, s1,/y)]ds1'dsy,’,  (44)

where
S1 = nl—jlx’ Sly, = % ’ (45)
W, = 7(:(81;‘1’ S1) exp[—i(ki1s1. — k2s2.)d ]exp(ikzss.2)
_ c(ﬁsil"*’l) exp(—ikisi.d)expliksss.(z + d)],  (46)
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and K’ is constant. If we extend the limit of integration
in Eq. (44) to the range [—x, «], the latter equation be-
comes a Fourier integral. The physical meaning of the
above extension is that the integration is performed over
the full 7 solid angle and not only over the area of the
aperture. In other words, the integral operation is being
performed not only in the range

k 2
(—1) (s + s1,2) <1 (47)
ko

but also outside this region. Relation (47) represents
the condition for homogeneous waves. Thus, when the
integration limits are extended to [—oo, o], the integral
representation also includes evanescent waves into the
resulting field. These evanescent waves propagate per-
pendicular to the optical axis, i.e., very close and par-
allel to the plane of the aperture. These waves decay
exponentially at larger z distances from the aperture and
therefore do not contribute to the far-field distribution.

We can conclude that the electromagnetic field of the
optical system under consideration can be represented in
the second material as the Fourier transform of a function
Wy, which consists of an amplitude factor and two phase
factors as shown by Eq. (46). These two phase factors
represent the phase at the point of observation (P) with
respect to the Gaussian focus (O); i.e., one of these phase
factors represents the phase exp[iksss.(z + d)] as the
wave propagates in the second material, and the other one
represents the phase exp(—ik;s;1.d) that the wave would
have had in the absence of the second material. The sign
of the latter phase component is negative, and so the total
of the two phases gives the phase difference with respect
to the Gaussian focus.

There is an alternative way to write Eq. (44):

Ey(x, y,2) =K' ffﬂ Wo'(s1x/, 81,/ )exp(ikas2,2)
1

X exp[i27(s1'x + s1,/y)]ds1/dsy,’, (48)

where

I WO .
Wo' = exp(ikas2,2)

Equation (48) is formally identical to the angular spec-
trum representation given by Goodman.'> Thus we can
conclude that our extension of the Debye integral for the
optical system under consideration can also be regarded
as the angular spectrum representation. The spectrum
is given as an amplitude factor describing the electric (and
also the magnetic) field as it traverses the system and
a phase factor corresponding to the phase difference be-
tween the ray vectors along the z direction (which latter
phase factor, apart from the distance d, is often referred
to as the astigmatic constant).

It should also be mentioned that Eq. (35) is in a form
identical to that of the corresponding equation of Wolf,!
i.e., the aberration function is represented in an exact
form by ¥(¢,, —d), as defined by Eq. (34). Since this
function is dependent only on the azimuthal angle ¢4, it
describes spherical aberration.
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E. Paraxial Approximation

Equation (13) can be approximated paraxially so as to cor-
respond to the axial light distribution for a low-aperture
objective lens. For this we recall the expression for the
electric field:

_ ik22 ff (e) a(slx, sly)
EZ(x’ Y, 2) 27Tk1 o T s1

z

X exp[—id(kis1, — k2S2.)]
X exp(ikose.z)expliki(sicx + s1yy)]dsi.dsy .
(49)

In the paraxial approximation the strength vector T©a
can be considered as constant, and therefore it is in-
dependent of the integration. Furthermore, we can set
1/s1, = constant and x = y = 0. The z components of
the unit ray vectors can be approximated with the first
and second terms of their expansion:

24 5,2 2
S1z = [1 - (Slxz + Slyz)]l/z ~1- Sl—SIy =1- 0-—’

2 2

x2 + 2

S =[1 — (s9.2 + szyz)]m =~1- 52 2 52y

2
2
—1- <%) 5 (50)
2

After we rearrange Eq. (49) and perform further calcu-
lations, the paraxial approximation of the electric field,
EP™ . is derived as

7 9
Eépar)(O, 0,2) = —ﬁB expi —k1 |:d<1 = @> + @zi|

k1 ny ny

B
Xf exp(—%ile(le)ada, (51)
0

where B is the paraxial semiangle of the aperture, B is
a constant, and

D=<1—ﬂ)d+ﬂz. (52)

ny ny

After we perform the integration with respect to o, the
intensity is given by
1(0, 0, 2) = |E5""(0, 0, 2)|?

2

exp( —% ile,B2> -1

=1 T
1 k1D B2
. of 1 9
sin”{ = kDB
=4y —————=— (53)

)

By putting n; = ny in Egs. (562) and (53), we obtain the

well-known axial intensity distribution for a single mate-

rial. If we use the integral formalism I{E) = 2(6) =0 in


gao
高亮
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the paraxial approximation, IéE) yields a form identical to
that of Eq. (51). By putting D = 0 in Eq. (52), we obtain
the location of the paraxial focus, for the case of two ma-
terials, that corresponds to that obtained by geometrical
optics.

In a subsequent paper we will show how our integral
formulas can be solved analytically, and we will present
results for the numerically computed time-averaged elec-
tric energy density as a function of the numerical aper-
ture of the lens and the depth of focusing into the bulk
specimen.

It is emphasized that our solution for the extension of
the Debye integral is an exact solution of the homoge-
neous wave equation and is therefore valid everywhere
except in the immediate vicinity of the aperture.

3. CONCLUSIONS

We have presented a new solution of electromagnetic
diffraction for the problem of light focused into an
isotropic and homogeneous material with refractive index
different from that of the medium of propagation and
situated in the image space of a high aperture coherent
optical system. Focusing into such materials results in
spherical aberration.

We have solved the above diffraction problem for the
case of a planar interface in a rigorous mathematical
manner, and the solution satisfies the homogeneous wave
equation and is therefore valid everywhere except in the
immediate vicinity of the aperture. The solution can be
regarded as an extension of Wolf’s integral formulas, for
focusing in a single medium, and is valid for high aperture
focusing into materials of mismatched refractive indices.
We have shown that for our case the aberration function is
in a closed analytical form. We have obtained the electric
and magnetic strength vectors in the second material.
We have given a physical interpretation of our results and
have obtained the paraxial approximation of our solution.

The main advantages of our method are as follows.
The solution is in a simple form that can be directly
used for numerical computation. The method for obtain-
ing the strength vectors is generally applicable. Incident
electric vectors, with directions other than perpendicular
to the optical axis, can readily be treated. The solution
is consistent, and, for the special case of a single medium
of propagation, it reduces to the results published previ-
ously. Apart from the initial assumption of Wolf’s inte-
gral formulas, no approximations are used.

ACKNOWLEDGMENTS

The authors gratefully acknowledge E. Wolf for many
stimulating discussions. Thanks are also due to

Torok et al.

T. Wilson for comments, J.dJ. Stamnes for providing
information concerning his research, R. Falster for dis-
cussions, and D. G. Pettifor for provision of computing
facilities in the Materials Modelling Laboratory of the
Department of Materials, Oxford University, which was
partially funded by Science and Engineering Research
Council (UK) grant GR/H58278. P. Toérok thanks
MEMC Electronic Materials SPA, Novara, Italy, for
support, and P. Varga thanks the Hungarian Science
Research Council for partial support through National
Science Research Fund (Hungary) grant 2957. P. Torok
and Z. Laczik are on leave from the Central Research
Institute for Physics, Hungarian Academy of Sciences.

REFERENCES

1. E. Wolf, “Electromagnetic diffraction in optical systems. 1.
An integral representation of the image field,” Proc. R. Soc.
London Ser. A 253, 349-357 (1959).

2. P. Debye, “Das Verhalten von Lichtwellen in der N#ha eines
Brennpunktes oder einer Brennlinie,” Ann. Phys. (Leipzig)
30, 755-776 (1909).

3. E. Wolf and Y. Li, “Conditions for the validity of the Debye
integral representation of focused fields,” Opt. Commun. 39,
205-210 (1981).

4. R. K. Luneburg, Mathematical Theory of Optics, 2nd ed. (U.
of California Press, Berkeley, Calif., 1966).

5. R. Kant, “Analytical solution of vector diffraction for focus-
ing optical systems with Seidel aberrations. I. Spherical
aberration, curvature of field, and distortion,” J. Mod. Opt.
40, 2293-2310 (1993).

6. J.Gasper, G. C. Sherman, and J. J. Stamnes, “Reflection and
refraction of an arbitrary electromagnetic wave at a plane
interface,” J. Opt. Soc. Am. 66, 955—961 (1976).

7. J.J. Stamnes and G. C. Sherman, “Radiation of electromag-
netic fields in uniaxially anisotropic media,” J. Opt. Soc. Am.
66, 780—788 (1976).

8. J.J. Stamnes and G. C. Sherman, “Radiation of electromag-
netic fields in biaxially anisotropic media,” J. Opt. Soc. Am.
68, 502-508 (1978).

9. H. Ling and S.-W. Lee, “Focusing of electromagnetic waves
through a dielectric interface,” J. Opt. Soc. Am. A 1,965-973
(1984).

10. Y. Ji and K. Hongo, “Analysis of electromagnetic waves re-
fracted by a spherical dielectric interface,” J. Opt. Soc. Am.
A 8, 541-548 (1991).

11. J.dJ. Stamnes, Waves in Focal Regions, 1st ed. (Adam Hilger,
Bristol, UK, 1986).

12. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aber-
rations in confocal fluorescence microscopy induced by
mismatches in refractive index,” J. Microsc. (Oxford) 169,
391-405 (1993).

13. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon,
Oxford, UK, 1970).

14. B. Richards and E. Wolf, “Electromagnetic diffraction in
optical systems. II. Structure of the image field in an
aplanatic system,” Proc. R. Soc. London Ser. A 253, 358—-379
(1959).

15. J. W. Goodman, Introduction to Fourier Optics, 1st ed.
(McGraw-Hill, San Francisco, 1968).





