origin
This commit is contained in:
60
README.md
Normal file
60
README.md
Normal file
@@ -0,0 +1,60 @@
|
||||
<br />
|
||||
<p align="center">
|
||||
<img src="https://github.com/vocdex/vocdex.github.io/blob/master/assets/img/icon.png" width="150" title="hover text">
|
||||
</p>
|
||||
|
||||
# DIGIT
|
||||
This codebase allows you:
|
||||
- Collect image frames from DIGIT and annotate circles in each frame.
|
||||
- Save the annotated frame values into a csv file.
|
||||
- Train a baseline MLP model for RGB to Normal mapping.
|
||||
- Generate depth maps in real-time using a fast Poisson Solver.
|
||||
- Estimate 2D object pose using PCA and OpenCV built-in algorithms.
|
||||
|
||||
Currently, labeling circles is done manually for each sensor. It can take up to an hour for annotating 30 images.
|
||||
This codebase has a script that will replace manual labeling and model training process up to 15 mins.(400% faster).
|
||||
This project is set up in a way that makes it easier to create your own ROS packages later for processing tactile data in your applications.
|
||||
## Visualization
|
||||
### Estimating object pose by fitting an ellipse (PCA and OpenCV):
|
||||
<br />
|
||||
<p align="center">
|
||||
<img src="https://github.com/vocdex/digit-depth/blob/main/assets/depthPCA.gif" width="400" title="depth">
|
||||
</p>
|
||||
|
||||
### Depth image point cloud :
|
||||
<br />
|
||||
<p align="center">
|
||||
<img src="https://github.com/vocdex/digit-depth/blob/main/assets/point-cloud.gif" width="400" title="point-cloud">
|
||||
</p>
|
||||
|
||||
|
||||
### Marker movement tracking ( useful for force direction and magnitude estimation):
|
||||
<br />
|
||||
<p align="center">
|
||||
<img src="https://github.com/vocdex/digit-depth/blob/main/assets/markers.gif" width="400" title="marker">
|
||||
</p>
|
||||
|
||||
## TODO
|
||||
- Add a Pix2Pix model to generate depth maps from RGB images.
|
||||
- Add an LSTM model for predicting slip from collected video frames.
|
||||
- Add a baseline ResNet based model for estimating total normal force magnitude.
|
||||
## Usage
|
||||
Change **gel height,gel width, mm_to_pix, base_img_path, sensor :serial_num ** values in rgb_to_normal.yaml file in config folder.
|
||||
- `pip install . `
|
||||
- `cd scripts`
|
||||
- `python record.py` : Press SPACEBAR to start recording.
|
||||
- `python label_data.py` : Press LEFTMOUSE to label center and RIGHTMOUSE to label circumference.
|
||||
- `python create_image_dataset.py` : Create a dataset of images and save it to a csv file.
|
||||
- `python train_mlp.py` : Train an MLP model for RGB to Normal mapping.
|
||||
|
||||
color2normal model will be saved to a separate folder "models" in the same directory as this file.
|
||||
|
||||
For ROS, you can use the following command to run the node:
|
||||
```bash
|
||||
python scripts/ros/depth_value_pub.py
|
||||
python scripts/ros/digit_image_pub.py
|
||||
```
|
||||
depth_value_pub.py publishes the maximum depth (deformation) value for the entire image when object is pressed. Accuracy depends on your MLP-depth model.
|
||||
digit_image_pub.py publishes compressed RGB images from DIGIT.
|
||||
### Please star this repo if you like it!
|
||||
### Feel free to post an issue and create PRs.
|
||||
BIN
assets/depthPCA.gif
Normal file
BIN
assets/depthPCA.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.8 MiB |
BIN
assets/icon.png
Normal file
BIN
assets/icon.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 8.4 KiB |
BIN
assets/markers.gif
Normal file
BIN
assets/markers.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 5.8 MiB |
BIN
assets/point-cloud.gif
Normal file
BIN
assets/point-cloud.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 976 KiB |
1
assets/readme.txt
Normal file
1
assets/readme.txt
Normal file
@@ -0,0 +1 @@
|
||||
This folder contains images for visualization of tactile-related tasks
|
||||
32
config/digit.yaml
Normal file
32
config/digit.yaml
Normal file
@@ -0,0 +1,32 @@
|
||||
model_path: "models/checkpoints/mlp_depth.ckpt"
|
||||
visualize:
|
||||
depth:
|
||||
enabled: True
|
||||
compute_type: "cuda"
|
||||
point3d:
|
||||
enabled: True
|
||||
compute_type: "cuda"
|
||||
sensor:
|
||||
mesh_name: adigit.STL
|
||||
serial_num: "D20001"
|
||||
|
||||
T_cam_offset: [[2.22e-16, 2.22e-16, -1.00e+00, 0.00e+00],
|
||||
[-1.00e+00, 0.00e+00, -2.22e-16, 0.00e+00],
|
||||
[0.00e+00, 1.00e+00, 2.22e-16, 1.50e-02],
|
||||
[0.00e+00, 0.00e+00, 0.00e+00, 1.00e+00]]
|
||||
|
||||
P: [[2.30940108e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
|
||||
[0.00000000e+00, 1.73205081e+00, 0.00000000e+00, 0.00000000e+00],
|
||||
[0.00000000e+00, 0.00000000e+00, -1.04081633e+00, -2.04081633e-03],
|
||||
[0.00000000e+00, 0.00000000e+00, -1.00000000e+00, 0.00000000e+00]]
|
||||
view_params:
|
||||
fov: 60
|
||||
front: [ -0.1, 0.1, 0.1 ]
|
||||
lookat: [-0.001, -0.01, 0.01 ]
|
||||
up: [ 0.04, -0.05, 0.190 ]
|
||||
zoom: 2.5
|
||||
z_near: 0.001
|
||||
z_far: 0.05
|
||||
|
||||
gel_width: 0.01835 # gel width (y-axis) in meters //original: 0.02
|
||||
gel_height: 0.02490 # gel height (x-axis) in meters //original: 0.03
|
||||
40
config/rgb_to_normal.yaml
Normal file
40
config/rgb_to_normal.yaml
Normal file
@@ -0,0 +1,40 @@
|
||||
prefix: ""
|
||||
random_seed: 0
|
||||
save_csv: False
|
||||
visualize:
|
||||
normals: True
|
||||
points3d: True
|
||||
|
||||
dataloader:
|
||||
batch_size: 1
|
||||
shuffle: False
|
||||
num_workers: 8
|
||||
annot_flag: True
|
||||
annot_file: "/home/shuk/digit-depth/csv/annotate.csv"
|
||||
dataset:
|
||||
dataset_type: 'imgs'
|
||||
save_dataset: True
|
||||
sensor:
|
||||
mesh_name: adigit.STL
|
||||
serial_num: "D00001"
|
||||
T_cam_offset: [ [ 2.22e-16, 2.22e-16, -1.00e+00, 0.00e+00 ],
|
||||
[ -1.00e+00, 0.00e+00, -2.22e-16, 0.00e+00 ],
|
||||
[ 0.00e+00, 1.00e+00, 2.22e-16, 1.50e-02 ],
|
||||
[ 0.00e+00, 0.00e+00, 0.00e+00, 1.00e+00 ] ]
|
||||
|
||||
P: [ [ 2.30940108e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00 ],
|
||||
[ 0.00000000e+00, 1.73205081e+00, 0.00000000e+00, 0.00000000e+00 ],
|
||||
[ 0.00000000e+00, 0.00000000e+00, -1.04081633e+00, -2.04081633e-03 ],
|
||||
[ 0.00000000e+00, 0.00000000e+00, -1.00000000e+00, 0.00000000e+00 ] ]
|
||||
|
||||
z_near: 0.001
|
||||
z_far: 0.05
|
||||
|
||||
gel_width: 0.02 # "D00001" 0.01835 # gel width (y-axis) in meters //original: 0.02
|
||||
gel_height: 0.03 # "D00001"0.02490 # gel height (x-axis) in meters //original: 0.03
|
||||
|
||||
base_path: "/home/shuk/digit-depth"
|
||||
model_path: "/home/shuk/digits2/tactile-in-hand/inhandpy/local/Mike/mike.ckpt"
|
||||
base_img_path: "/home/shuk/digit-depth/images/0014.png"
|
||||
mm_to_pixel: 21.09
|
||||
|
||||
4
digit_depth/__init__.py
Normal file
4
digit_depth/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .digit import *
|
||||
from .third_party import *
|
||||
from .train import *
|
||||
from .handlers import *
|
||||
97
digit_depth/dataio/combine_A_and_B.py
Normal file
97
digit_depth/dataio/combine_A_and_B.py
Normal file
@@ -0,0 +1,97 @@
|
||||
"""
|
||||
combine_A_and_B.py
|
||||
Preprocessing for pix2pix
|
||||
|
||||
Copyright (c) 2016, Phillip Isola and Jun-Yan Zhu
|
||||
All rights reserved.
|
||||
|
||||
BSD License
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
from multiprocessing import Pool
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def image_write(path_A, path_B, path_AB):
|
||||
im_A = cv2.imread(
|
||||
path_A, 1
|
||||
) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR
|
||||
im_B = cv2.imread(
|
||||
path_B, 1
|
||||
) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR
|
||||
|
||||
# im_A = cv2.transpose(im_A)
|
||||
# im_B = cv2.transpose(im_B)
|
||||
|
||||
im_AB = np.concatenate([im_A, im_B], 1)
|
||||
cv2.imwrite(path_AB, im_AB)
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser("create image pairs")
|
||||
parser.add_argument("--fold_A", dest="fold_A", help="input directory for image A", type=str, default="../dataset/50kshoes_edges")
|
||||
parser.add_argument("--fold_B", dest="fold_B", help="input directory for image B", type=str, default="../dataset/50kshoes_jpg")
|
||||
parser.add_argument("--fold_AB", dest="fold_AB", help="output directory", type=str, default="../dataset/test_AB")
|
||||
parser.add_argument("--num_imgs", dest="num_imgs", help="number of images", type=int, default=1000000)
|
||||
parser.add_argument("--use_AB", dest="use_AB", help="if true: (0001_A, 0001_B) to (0001_AB)", action="store_true")
|
||||
parser.add_argument("--no_multiprocessing", dest="no_multiprocessing", help="If used, chooses single CPU execution instead of parallel execution", action="store_true", default=False,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
for arg in vars(args):
|
||||
print("[%s] = " % arg, getattr(args, arg))
|
||||
|
||||
splits = os.listdir(args.fold_A)
|
||||
|
||||
if not args.no_multiprocessing:
|
||||
pool = Pool()
|
||||
|
||||
for sp in splits:
|
||||
img_fold_A = os.path.join(args.fold_A, sp)
|
||||
img_fold_B = os.path.join(args.fold_B, sp)
|
||||
img_list = os.listdir(img_fold_A)
|
||||
if args.use_AB:
|
||||
img_list = [img_path for img_path in img_list if "_A." in img_path]
|
||||
|
||||
num_imgs = min(args.num_imgs, len(img_list))
|
||||
print("split = %s, use %d/%d images" % (sp, num_imgs, len(img_list)))
|
||||
img_fold_AB = os.path.join(args.fold_AB, sp)
|
||||
if not os.path.isdir(img_fold_AB):
|
||||
os.makedirs(img_fold_AB)
|
||||
print("split = %s, number of images = %d" % (sp, num_imgs))
|
||||
for n in range(num_imgs):
|
||||
name_A = img_list[n]
|
||||
path_A = os.path.join(img_fold_A, name_A)
|
||||
if args.use_AB:
|
||||
name_B = name_A.replace("_A.", "_B.")
|
||||
else:
|
||||
name_B = name_A
|
||||
path_B = os.path.join(img_fold_B, name_B)
|
||||
if os.path.isfile(path_A) and os.path.isfile(path_B):
|
||||
name_AB = name_A
|
||||
if args.use_AB:
|
||||
name_AB = name_AB.replace("_A.", ".") # remove _A
|
||||
path_AB = os.path.join(img_fold_AB, name_AB)
|
||||
if not args.no_multiprocessing:
|
||||
pool.apply_async(image_write, args=(path_A, path_B, path_AB))
|
||||
else:
|
||||
im_A = cv2.imread(path_A, 1) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR
|
||||
im_B = cv2.imread(path_B, 1) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR
|
||||
im_AB = np.concatenate([im_A, im_B], 1)
|
||||
cv2.imwrite(path_AB, im_AB)
|
||||
if not args.no_multiprocessing:
|
||||
pool.close()
|
||||
pool.join()
|
||||
109
digit_depth/dataio/create_csv.py
Normal file
109
digit_depth/dataio/create_csv.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import glob
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from PIL import Image
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
def create_pixel_csv(img_dir: str, save_dir: str, img_type: str):
|
||||
"""
|
||||
Creates a CSV file with the pixel coordinates of the image
|
||||
:param img_dir: image directory containing the images
|
||||
:param save_dir: directory for saving the CSV file per image
|
||||
:param img_type: color or normal
|
||||
:return: saves the CSV file per image0
|
||||
"""
|
||||
imgs = sorted(glob.glob(f"{img_dir}/*.png"))
|
||||
print(f"Found {len(imgs)} {img_type} images")
|
||||
for idx, img_path in enumerate(imgs):
|
||||
img = Image.open(img_path)
|
||||
img_np = np.array(img)
|
||||
xy_coords = np.flip(
|
||||
np.column_stack(np.where(np.all(img_np >= 0, axis=2))), axis=1
|
||||
)
|
||||
rgb = np.reshape(img_np, (np.prod(img_np.shape[:2]), 3))
|
||||
# Add pixel numbers in front
|
||||
pixel_numbers = np.expand_dims(np.arange(1, xy_coords.shape[0] + 1), axis=1)
|
||||
value = np.hstack([pixel_numbers, xy_coords, rgb])
|
||||
# Properly save as CSV
|
||||
if img_type == "color":
|
||||
df = pd.DataFrame(value, columns=["pixel_number", "X", "Y", "R", "G", "B"])
|
||||
del df["pixel_number"]
|
||||
df.to_csv(f"{save_dir}/image_{idx}.csv", sep=",", index=False)
|
||||
elif img_type == "normal":
|
||||
df = pd.DataFrame(value, columns=["pixel_number", "X", "Y", "Nx", "Ny", "Nz"])
|
||||
del df["pixel_number"]
|
||||
df.to_csv(f"{save_dir}/image_{idx}.csv", sep=",", index=False)
|
||||
print(f"{img_type} image CSV written for image {idx}")
|
||||
|
||||
|
||||
def combine_csv(csv_dir: str, img_type: str):
|
||||
"""
|
||||
Combines all the CSV files in the directory into one CSV file for later use in training
|
||||
|
||||
:param csv_dir: directory containing the CSV files
|
||||
:param img_type: color or normal
|
||||
"""
|
||||
csv_files=(glob.glob(f"{csv_dir}/*.csv"))
|
||||
print(f"Found {len(csv_files)} {img_type} CSV files")
|
||||
df = pd.concat([pd.read_csv(f, sep=",") for f in (glob.glob(f"{csv_dir}/*.csv"))])
|
||||
df.to_csv(f"{csv_dir}/combined.csv", sep=",", index=False)
|
||||
print(f"Combined CSV written for {img_type} images")
|
||||
check_nans(f"{csv_dir}/combined.csv")
|
||||
print("----------------------------------------------------")
|
||||
|
||||
|
||||
def create_train_test_csv(save_dir: str, normal_path: str, color_path: str):
|
||||
"""
|
||||
Creates a CSV file with the pixel coordinates of the image. Samples 4% from zeros.
|
||||
Splits the cleaned dataset into train and test (80%/20%)
|
||||
:param save_dir: path for train_test_split folder
|
||||
:param normal_path: path to combined normal CSV file
|
||||
:param color_path: path to combined color CSV file
|
||||
"""
|
||||
seed=42
|
||||
rgb_df = pd.read_csv(color_path, sep=",")
|
||||
normal_df = pd.read_csv(normal_path, sep=",")
|
||||
|
||||
rgb_df['Nx'] = normal_df['Nx']
|
||||
rgb_df['Ny'] = normal_df['Ny']
|
||||
rgb_df['Nz'] = normal_df['Nz']
|
||||
|
||||
zeros_df = rgb_df[(rgb_df['Nx'] == 127) & (rgb_df['Ny'] == 127) ^ (rgb_df['Nz'] == 127)]
|
||||
print(f"Found {len(zeros_df)} zeros in the dataset")
|
||||
non_zeros_df = rgb_df[(rgb_df['Nx'] != 127) | (rgb_df['Ny'] != 127) & (rgb_df['Nz'] != 127)]
|
||||
print(f"Found {len(non_zeros_df)} non-zeros in the dataset")
|
||||
zeros_df.to_csv(f"{save_dir}/zeros.csv", sep=",", index=False)
|
||||
non_zeros_df.to_csv(f"{save_dir}/non_zeros.csv", sep=",", index=False)
|
||||
print("----------------------------------------------------")
|
||||
# sampling 4% of zeros
|
||||
clean_df = zeros_df.sample(frac=0.04, random_state=seed)
|
||||
clean_df = pd.concat([clean_df, non_zeros_df])
|
||||
clean_df.to_csv(f"{save_dir}/clean-data.csv", sep=",", index=False)
|
||||
print(f"Clean data CSV of {len(clean_df)} written")
|
||||
|
||||
# split into train and test
|
||||
train_df,test_df=train_test_split(clean_df,test_size=0.2,random_state=seed)
|
||||
train_df.to_csv(f"{save_dir}/train.csv", sep=",", index=False)
|
||||
test_df.to_csv(f"{save_dir}/test.csv", sep=",", index=False)
|
||||
print(f"Train set of size {len(train_df)} and Test set of size {len(test_df)} written")
|
||||
|
||||
|
||||
def check_nans(csv_path: str):
|
||||
"""
|
||||
Checks if there are any NaNs in the CSV file
|
||||
:param csv_path: path to the CSV file
|
||||
:return: True if there are no NaNs, False otherwise
|
||||
"""
|
||||
df = pd.read_csv(csv_path, sep=",")
|
||||
if df.isnull().values.any():
|
||||
nans=df.isnull().sum().sum()
|
||||
print(f"Found {nans} NaNs in {csv_path}")
|
||||
print("Replacing NaNs with mean")
|
||||
df.fillna(df.mean(), inplace=True)
|
||||
df.to_csv(csv_path, sep=",", index=False)
|
||||
print(f"NaNs replaced in {csv_path}")
|
||||
else:
|
||||
print("No NaNs found.Perfect!")
|
||||
|
||||
22
digit_depth/dataio/data_loader.py
Normal file
22
digit_depth/dataio/data_loader.py
Normal file
@@ -0,0 +1,22 @@
|
||||
"""
|
||||
Data loader for the color-normal datasets
|
||||
"""
|
||||
import torchvision.transforms as transforms
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from digit_depth.dataio.digit_dataset import DigitRealImageAnnotDataset
|
||||
|
||||
|
||||
def data_loader(dir_dataset, params):
|
||||
"""A data loader for the color-normal datasets
|
||||
Args:
|
||||
dir_dataset: path to the dataset
|
||||
params: a dict of parameters
|
||||
"""
|
||||
transform = transforms.Compose([transforms.ToTensor()])
|
||||
dataset = DigitRealImageAnnotDataset( dir_dataset=dir_dataset, annot_file=params.annot_file,
|
||||
transform=transform, annot_flag=params.annot_flag)
|
||||
dataloader = DataLoader(dataset, batch_size=params.batch_size, shuffle=params.shuffle,
|
||||
num_workers=params.num_workers)
|
||||
|
||||
return dataloader, dataset
|
||||
43
digit_depth/dataio/digit_dataset.py
Normal file
43
digit_depth/dataio/digit_dataset.py
Normal file
@@ -0,0 +1,43 @@
|
||||
import glob
|
||||
|
||||
import pandas as pd
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
|
||||
class DigitRealImageAnnotDataset(Dataset):
|
||||
def __init__( self, dir_dataset, annot_file, transform=None, annot_flag=True, img_type="png" ):
|
||||
self.dir_dataset = dir_dataset
|
||||
print(f"Loading dataset from {dir_dataset}")
|
||||
self.transform = transform
|
||||
self.annot_flag = annot_flag
|
||||
|
||||
# a list of image paths sorted. dir_dataset is the root dir of the datasets (color)
|
||||
self.img_files = sorted(glob.glob(f"{self.dir_dataset}/*.{img_type}"))
|
||||
print(f"Found {len(self.img_files)} images")
|
||||
if self.annot_flag:
|
||||
self.annot_dataframe = pd.read_csv(annot_file, sep=",")
|
||||
|
||||
def __getitem__(self, idx):
|
||||
"""Returns a tuple of (img, annot) where annot is a tensor of shape (3,1)"""
|
||||
|
||||
# read in image
|
||||
img = Image.open(self.img_files[idx])
|
||||
img = self.transform(img)
|
||||
img = img.permute(0, 2, 1) # (3,240,320) -> (3,320,240)
|
||||
# read in region annotations
|
||||
if self.annot_flag:
|
||||
img_name = self.img_files[idx]
|
||||
row_filter = self.annot_dataframe["img_names"] == img_name
|
||||
region_attr = self.annot_dataframe.loc[
|
||||
row_filter, ["center_x", "center_y", "radius"]
|
||||
]
|
||||
annot = (torch.tensor(region_attr.values, dtype=torch.int32) if (len(region_attr) > 0) else torch.tensor([]))
|
||||
data = img
|
||||
if self.annot_flag:
|
||||
data = (img, annot)
|
||||
return data
|
||||
|
||||
def __len__(self):
|
||||
return len(self.img_files)
|
||||
47
digit_depth/dataio/generate_sphere_gt_normals.py
Normal file
47
digit_depth/dataio/generate_sphere_gt_normals.py
Normal file
@@ -0,0 +1,47 @@
|
||||
"""
|
||||
Script for generating sphere ground truth normal images.
|
||||
"""
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def generate_sphere_gt_normals(img_mask, center_x, center_y, radius):
|
||||
"""
|
||||
Generates sphere ground truth normal images for an image.
|
||||
Args:
|
||||
img_mask: a numpy array of shape [H, W, 3]
|
||||
center_x: x coordinate of the center of the sphere
|
||||
center_y: y coordinate of the center of the sphere
|
||||
radius: the radius of the sphere
|
||||
Returns:
|
||||
img_normal: a numpy array of shape [H, W, 3]
|
||||
"""
|
||||
img_normal = np.zeros(img_mask.shape, dtype="float64")
|
||||
|
||||
for y in range(img_mask.shape[0]):
|
||||
for x in range(img_mask.shape[1]):
|
||||
|
||||
img_normal[y, x, 0] = 0.0
|
||||
img_normal[y, x, 1] = 0.0
|
||||
img_normal[y, x, 2] = 1.0
|
||||
|
||||
if np.sum(img_mask[y, x, :]) > 0:
|
||||
dist = np.sqrt((x - center_x) ** 2 + (y - center_y) ** 2)
|
||||
ang_xz = math.acos(dist / radius)
|
||||
ang_xy = math.atan2(y - center_y, x - center_x)
|
||||
|
||||
nx = math.cos(ang_xz) * math.cos(ang_xy)
|
||||
ny = math.cos(ang_xz) * math.sin(ang_xy)
|
||||
nz = math.sin(ang_xz)
|
||||
|
||||
img_normal[y, x, 0] = nx
|
||||
img_normal[y, x, 1] = -ny
|
||||
img_normal[y, x, 2] = nz
|
||||
|
||||
norm_val = np.linalg.norm(img_normal[y, x, :])
|
||||
img_normal[y, x, :] = img_normal[y, x, :] / norm_val
|
||||
|
||||
# img_normal between [-1., 1.], converting to [0., 1.]
|
||||
img_normal = (img_normal + 1.0) * 0.5
|
||||
return img_normal
|
||||
1
digit_depth/digit/__init__.py
Normal file
1
digit_depth/digit/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .digit_sensor import *
|
||||
37
digit_depth/digit/digit_sensor.py
Normal file
37
digit_depth/digit/digit_sensor.py
Normal file
@@ -0,0 +1,37 @@
|
||||
import time
|
||||
|
||||
from digit_interface import Digit
|
||||
from digit_interface.digit import DigitDefaults
|
||||
|
||||
|
||||
class DigitSensor:
|
||||
def __init__(self, fps: int, resolution: str, serial_num: str):
|
||||
self.fps = fps
|
||||
self.resolution = resolution
|
||||
self.serial_num = serial_num
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
"""Calls the digit sensor."""
|
||||
digit = self.setup_digit()
|
||||
return digit
|
||||
|
||||
def __str__(self):
|
||||
return f"DigitSensor(fps={self.fps}, resolution={self.resolution}, serial_num={self.serial_num})"
|
||||
|
||||
def setup_digit(self,):
|
||||
"Sets up the digit sensor and returns it."
|
||||
|
||||
digit = Digit(self.serial_num)
|
||||
digit.connect()
|
||||
|
||||
rgb_list = [(15, 0, 0), (0, 15, 0), (0, 0, 15)]
|
||||
|
||||
for rgb in rgb_list:
|
||||
digit.set_intensity_rgb(*rgb)
|
||||
time.sleep(1)
|
||||
digit.set_intensity(15)
|
||||
resolution = DigitDefaults.STREAMS[self.resolution]
|
||||
digit.set_resolution(resolution)
|
||||
fps = Digit.STREAMS[self.resolution]["fps"][str(self.fps) + "fps"]
|
||||
digit.set_fps(fps)
|
||||
return digit
|
||||
1
digit_depth/handlers/__init__.py
Normal file
1
digit_depth/handlers/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .image import ImageHandler
|
||||
38
digit_depth/handlers/image.py
Normal file
38
digit_depth/handlers/image.py
Normal file
@@ -0,0 +1,38 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
|
||||
|
||||
class ImageHandler:
|
||||
def __init__(self, img_path, convert="RGB"):
|
||||
self.img = Image.open(img_path).convert(convert)
|
||||
self.convert = convert
|
||||
|
||||
@staticmethod
|
||||
def tensor_to_PIL(self, img_tensor):
|
||||
img_tensor = img_tensor.squeeze_(0)
|
||||
return transforms.ToPILImage()(img_tensor).convert(self.convert)
|
||||
|
||||
@property
|
||||
def tensor(self):
|
||||
return transforms.ToTensor()(self.img).unsqueeze_(0)
|
||||
|
||||
@property
|
||||
def image(self):
|
||||
return self.img
|
||||
|
||||
@property
|
||||
def nparray(self):
|
||||
return np.array(self.img)
|
||||
|
||||
@staticmethod
|
||||
def save(file_name, img):
|
||||
if isinstance(img, Image.Image):
|
||||
# this is a PIL image
|
||||
img.save(file_name)
|
||||
else:
|
||||
# cv2 image
|
||||
cv2.imwrite(file_name, img)
|
||||
4
digit_depth/third_party/__init__.py
vendored
Normal file
4
digit_depth/third_party/__init__.py
vendored
Normal file
@@ -0,0 +1,4 @@
|
||||
from .data_utils import *
|
||||
from .geom_utils import *
|
||||
from .vis_utils import *
|
||||
from .poisson import *
|
||||
30
digit_depth/third_party/data_utils.py
vendored
Normal file
30
digit_depth/third_party/data_utils.py
vendored
Normal file
@@ -0,0 +1,30 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
"""
|
||||
dataloader, logger helpers
|
||||
"""
|
||||
|
||||
|
||||
def pandas_col_to_numpy(df_col):
|
||||
|
||||
df_col = df_col.apply(lambda x: np.fromstring(x.replace("\n", "").replace("[", "").replace("]", "").replace(" ", " "), sep=", "))
|
||||
df_col = np.stack(df_col)
|
||||
return df_col
|
||||
|
||||
|
||||
def pandas_string_to_numpy(arr_str):
|
||||
arr_npy = np.fromstring(arr_str.replace("\n", "").replace("[", "").replace("]", "").replace(" ", " "),sep=", ")
|
||||
return arr_npy
|
||||
|
||||
|
||||
def interpolate_img(img, rows, cols):
|
||||
"""
|
||||
img: C x H x W
|
||||
"""
|
||||
|
||||
img = torch.nn.functional.interpolate(img, size=cols)
|
||||
img = torch.nn.functional.interpolate(img.permute(0, 2, 1), size=rows)
|
||||
img = img.permute(0, 2, 1)
|
||||
|
||||
return img
|
||||
531
digit_depth/third_party/geom_utils.py
vendored
Normal file
531
digit_depth/third_party/geom_utils.py
vendored
Normal file
@@ -0,0 +1,531 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
|
||||
import copy
|
||||
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
import torch
|
||||
from scipy import ndimage
|
||||
|
||||
from digit_depth.third_party.poisson import poisson_reconstruct
|
||||
from digit_depth.third_party.vis_utils import visualize_inlier_outlier
|
||||
|
||||
"""
|
||||
Common functions
|
||||
"""
|
||||
|
||||
|
||||
def flip(x):
|
||||
return torch.flip(x, dims=[0])
|
||||
|
||||
|
||||
def min_clip(x, min_val):
|
||||
return torch.max(x, min_val)
|
||||
|
||||
|
||||
def max_clip(x, max_val):
|
||||
return torch.min(x, max_val)
|
||||
|
||||
|
||||
def normalize(x, min_val, max_val):
|
||||
return (x - torch.min(x)) * (max_val - min_val) / (
|
||||
torch.max(x) - torch.min(x)
|
||||
) + min_val
|
||||
|
||||
|
||||
def mask_background(x, bg_mask, bg_val=0.0):
|
||||
if bg_mask is not None:
|
||||
x[bg_mask] = bg_val
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def remove_background_pts(pts, bg_mask=None):
|
||||
if bg_mask is not None:
|
||||
fg_mask_pts = ~bg_mask.view(-1)
|
||||
points3d_x = pts[0, fg_mask_pts].view(1, -1)
|
||||
points3d_y = pts[1, fg_mask_pts].view(1, -1)
|
||||
points3d_z = pts[2, fg_mask_pts].view(1, -1)
|
||||
pts_fg = torch.cat((points3d_x, points3d_y, points3d_z), dim=0)
|
||||
else:
|
||||
pts_fg = pts
|
||||
|
||||
return pts_fg
|
||||
|
||||
|
||||
"""
|
||||
3D transform helper functions
|
||||
"""
|
||||
|
||||
|
||||
def Rt_to_T(R=None, t=None, device=None):
|
||||
"""
|
||||
:param R: rotation, (B, 3, 3) or (3, 3)
|
||||
:param t: translation, (B, 3) or (3)
|
||||
:return: T, (B, 4, 4) or (4, 4)
|
||||
"""
|
||||
|
||||
T = torch.eye(4, device=device)
|
||||
|
||||
if (len(R.shape) > 2) & (len(t.shape) > 1): # batch version
|
||||
B = R.shape[0]
|
||||
T = T.repeat(B, 1, 1)
|
||||
if R is not None:
|
||||
T[:, 0:3, 0:3] = R
|
||||
if t is not None:
|
||||
T[:, 0:3, -1] = t
|
||||
|
||||
else:
|
||||
if R is not None:
|
||||
T[0:3, 0:3] = R
|
||||
if t is not None:
|
||||
T[0:3, -1] = t
|
||||
|
||||
return T
|
||||
|
||||
|
||||
def transform_pts3d(T, pts):
|
||||
"""
|
||||
T: 4x4
|
||||
pts: 3xN
|
||||
|
||||
returns 3xN
|
||||
"""
|
||||
D, N = pts.shape
|
||||
|
||||
if D == 3:
|
||||
pts_tf = (
|
||||
torch.cat((pts, torch.ones(1, N)), dim=0)
|
||||
if torch.is_tensor(pts)
|
||||
else np.concatenate((pts, torch.ones(1, N)), axis=0)
|
||||
)
|
||||
|
||||
pts_tf = torch.matmul(T, pts_tf) if torch.is_tensor(pts) else np.matmul(T, pts_tf)
|
||||
pts_tf = pts_tf[0:3, :]
|
||||
|
||||
return pts_tf
|
||||
|
||||
|
||||
"""
|
||||
3D-2D projection / conversion functions
|
||||
OpenGL transforms reference: http://www.songho.ca/opengl/gl_transform.html
|
||||
"""
|
||||
|
||||
|
||||
def _vectorize_pixel_coords(rows, cols, device=None):
|
||||
y_range = torch.arange(rows, device=device)
|
||||
x_range = torch.arange(cols, device=device)
|
||||
grid_x, grid_y = torch.meshgrid(x_range, y_range)
|
||||
pixel_pos = torch.stack([grid_x.reshape(-1), grid_y.reshape(-1)], dim=0) # 2 x N
|
||||
|
||||
return pixel_pos
|
||||
|
||||
|
||||
def _clip_to_pixel(clip_pos, img_shape, params):
|
||||
H, W = img_shape
|
||||
|
||||
# clip -> ndc coords
|
||||
x_ndc = clip_pos[0, :] / clip_pos[3, :]
|
||||
y_ndc = clip_pos[1, :] / clip_pos[3, :]
|
||||
# z_ndc = clip_pos[2, :] / clip_pos[3, :]
|
||||
|
||||
# ndc -> pixel coords
|
||||
x_pix = (W - 1) / 2 * (x_ndc + 1) # [-1, 1] -> [0, W-1]
|
||||
y_pix = (H - 1) / 2 * (y_ndc + 1) # [-1, 1] -> [0, H-1]
|
||||
# z_pix = (f-n) / 2 * z_ndc + (f+n) / 2
|
||||
|
||||
pixel_pos = torch.stack((x_pix, y_pix), dim=0)
|
||||
|
||||
return pixel_pos
|
||||
|
||||
|
||||
def _pixel_to_clip(pix_pos, depth_map, params):
|
||||
"""
|
||||
:param pix_pos: position in pixel space, (2, N)
|
||||
:param depth_map: depth map, (H, W)
|
||||
:return: clip_pos position in clip space, (4, N)
|
||||
"""
|
||||
|
||||
x_pix = pix_pos[0, :]
|
||||
y_pix = pix_pos[1, :]
|
||||
|
||||
H, W = depth_map.shape
|
||||
f = params.z_far
|
||||
n = params.z_near
|
||||
|
||||
# pixel -> ndc coords
|
||||
x_ndc = 2 / (W - 1) * x_pix - 1 # [0, W-1] -> [-1, 1]
|
||||
y_ndc = 2 / (H - 1) * y_pix - 1 # [0, H-1] -> [-1, 1]
|
||||
z_buf = depth_map[y_pix, x_pix]
|
||||
|
||||
# ndc -> clip coords
|
||||
z_eye = -z_buf
|
||||
w_c = -z_eye
|
||||
x_c = x_ndc * w_c
|
||||
y_c = y_ndc * w_c
|
||||
z_c = -(f + n) / (f - n) * z_eye - 2 * f * n / (f - n) * 1.0
|
||||
|
||||
clip_pos = torch.stack([x_c, y_c, z_c, w_c], dim=0)
|
||||
|
||||
return clip_pos
|
||||
|
||||
|
||||
def _clip_to_eye(clip_pos, P):
|
||||
P_inv = torch.inverse(P)
|
||||
eye_pos = torch.matmul(P_inv, clip_pos)
|
||||
|
||||
return eye_pos
|
||||
|
||||
|
||||
def _eye_to_clip(eye_pos, P):
|
||||
clip_pos = torch.matmul(P, eye_pos)
|
||||
|
||||
return clip_pos
|
||||
|
||||
|
||||
def _eye_to_world(eye_pos, V):
|
||||
V_inv = torch.inverse(V)
|
||||
world_pos = torch.matmul(V_inv, eye_pos)
|
||||
|
||||
world_pos = world_pos / world_pos[3, :]
|
||||
|
||||
return world_pos
|
||||
|
||||
|
||||
def _world_to_eye(world_pos, V):
|
||||
eye_pos = torch.matmul(V, world_pos)
|
||||
|
||||
return eye_pos
|
||||
|
||||
|
||||
def _world_to_object(world_pos, M):
|
||||
M_inv = torch.inverse(M)
|
||||
obj_pos = torch.matmul(M_inv, world_pos)
|
||||
|
||||
obj_pos = obj_pos / obj_pos[3, :]
|
||||
|
||||
return obj_pos
|
||||
|
||||
|
||||
def _object_to_world(obj_pos, M):
|
||||
world_pos = torch.matmul(M, obj_pos)
|
||||
|
||||
world_pos = world_pos / world_pos[3, :]
|
||||
|
||||
return world_pos
|
||||
|
||||
|
||||
def depth_to_pts3d(depth, P, V, params=None, ordered_pts=False):
|
||||
"""
|
||||
:param depth: depth map, (C, H, W) or (H, W)
|
||||
:param P: projection matrix, (4, 4)
|
||||
:param V: view matrix, (4, 4)
|
||||
:return: world_pos position in 3d world coordinates, (3, H, W) or (3, N)
|
||||
"""
|
||||
|
||||
assert 2 <= len(depth.shape) <= 3
|
||||
assert P.shape == (4, 4)
|
||||
assert V.shape == (4, 4)
|
||||
|
||||
depth_map = depth.squeeze(0) if (len(depth.shape) == 3) else depth
|
||||
H, W = depth_map.shape
|
||||
pixel_pos = _vectorize_pixel_coords(rows=H, cols=W)
|
||||
|
||||
clip_pos = _pixel_to_clip(pixel_pos, depth_map, params)
|
||||
eye_pos = _clip_to_eye(clip_pos, P)
|
||||
world_pos = _eye_to_world(eye_pos, V)
|
||||
|
||||
world_pos = world_pos[0:3, :] / world_pos[3, :]
|
||||
|
||||
if ordered_pts:
|
||||
H, W = depth_map.shape
|
||||
world_pos = world_pos.reshape(world_pos.shape[0], H, W)
|
||||
|
||||
return world_pos
|
||||
|
||||
|
||||
"""
|
||||
Optical flow functions
|
||||
"""
|
||||
|
||||
|
||||
def analytic_flow(img1, depth1, P, V1, V2, M1, M2, gel_depth, params):
|
||||
C, H, W = img1.shape
|
||||
depth_map = depth1.squeeze(0) if (len(depth1.shape) == 3) else depth1
|
||||
pixel_pos = _vectorize_pixel_coords(rows=H, cols=W, device=img1.device)
|
||||
|
||||
clip_pos = _pixel_to_clip(pixel_pos, depth_map, params)
|
||||
eye_pos = _clip_to_eye(clip_pos, P)
|
||||
world_pos = _eye_to_world(eye_pos, V1)
|
||||
obj_pos = _world_to_object(world_pos, M1)
|
||||
|
||||
world_pos = _object_to_world(obj_pos, M2)
|
||||
eye_pos = _world_to_eye(world_pos, V2)
|
||||
clip_pos = _eye_to_clip(eye_pos, P)
|
||||
pixel_pos_proj = _clip_to_pixel(clip_pos, (H, W), params)
|
||||
|
||||
pixel_flow = pixel_pos - pixel_pos_proj
|
||||
flow_map = pixel_flow.reshape(pixel_flow.shape[0], H, W)
|
||||
|
||||
# mask out background gel pixels
|
||||
mask_idxs = depth_map >= gel_depth
|
||||
flow_map[:, mask_idxs] = 0.0
|
||||
|
||||
return flow_map
|
||||
|
||||
|
||||
"""
|
||||
Normal to depth conversion / integration functions
|
||||
"""
|
||||
|
||||
|
||||
def _preproc_depth(img_depth, bg_mask=None):
|
||||
if bg_mask is not None:
|
||||
img_depth = mask_background(img_depth, bg_mask=bg_mask, bg_val=0.0)
|
||||
|
||||
return img_depth
|
||||
|
||||
|
||||
def _preproc_normal(img_normal, bg_mask=None):
|
||||
"""
|
||||
img_normal: lies in range [0, 1]
|
||||
"""
|
||||
|
||||
# 0.5 corresponds to 0
|
||||
img_normal = img_normal - 0.5
|
||||
|
||||
# normalize
|
||||
img_normal = img_normal / torch.linalg.norm(img_normal, dim=0)
|
||||
|
||||
# set background to have only z normals (flat, facing camera)
|
||||
if bg_mask is not None:
|
||||
img_normal[0:2, bg_mask] = 0.0
|
||||
img_normal[2, bg_mask] = 1.0
|
||||
|
||||
return img_normal
|
||||
|
||||
|
||||
def _depth_to_grad_depth(img_depth, bg_mask=None):
|
||||
gradx = ndimage.sobel(img_depth.cpu().detach().numpy(), axis=1, mode="constant")
|
||||
grady = ndimage.sobel(img_depth.cpu().detach().numpy(), axis=0, mode="constant")
|
||||
|
||||
gradx = torch.FloatTensor(gradx, device=img_depth.device)
|
||||
grady = torch.FloatTensor(grady, device=img_depth.device)
|
||||
|
||||
if bg_mask is not None:
|
||||
gradx = mask_background(gradx, bg_mask=bg_mask, bg_val=0.0)
|
||||
grady = mask_background(grady, bg_mask=bg_mask, bg_val=0.0)
|
||||
|
||||
return gradx, grady
|
||||
|
||||
|
||||
def _normal_to_grad_depth(img_normal, gel_width=1.0, gel_height=1.0, bg_mask=None):
|
||||
# Ref: https://stackoverflow.com/questions/34644101/calculate-surface-normals-from-depth-image-using-neighboring-pixels-cross-produc/34644939#34644939
|
||||
|
||||
EPS = 1e-1
|
||||
nz = torch.max(torch.tensor(EPS), img_normal[2, :])
|
||||
|
||||
dzdx = -(img_normal[0, :] / nz).squeeze()
|
||||
dzdy = -(img_normal[1, :] / nz).squeeze()
|
||||
|
||||
# taking out negative sign as we are computing gradient of depth not z
|
||||
# since z is pointed towards sensor, increase in z corresponds to decrease in depth
|
||||
# i.e., dz/dx = -ddepth/dx
|
||||
ddepthdx = -dzdx
|
||||
ddepthdy = -dzdy
|
||||
|
||||
# sim: pixel axis v points in opposite dxn of camera axis y
|
||||
ddepthdu = ddepthdx
|
||||
ddepthdv = -ddepthdy
|
||||
|
||||
gradx = ddepthdu # cols
|
||||
grady = ddepthdv # rows
|
||||
|
||||
# convert units from pixel to meters
|
||||
C, H, W = img_normal.shape
|
||||
gradx = gradx * (gel_width / W)
|
||||
grady = grady * (gel_height / H)
|
||||
|
||||
if bg_mask is not None:
|
||||
gradx = mask_background(gradx, bg_mask=bg_mask, bg_val=0.0)
|
||||
grady = mask_background(grady, bg_mask=bg_mask, bg_val=0.0)
|
||||
|
||||
return gradx, grady
|
||||
|
||||
|
||||
def _integrate_grad_depth(gradx, grady, boundary=None, bg_mask=None, max_depth=0.0):
|
||||
if boundary is None:
|
||||
boundary = torch.zeros((gradx.shape[0], gradx.shape[1]))
|
||||
|
||||
img_depth_recon = poisson_reconstruct(
|
||||
grady.cpu().detach().numpy(),
|
||||
gradx.cpu().detach().numpy(),
|
||||
boundary.cpu().detach().numpy(),
|
||||
)
|
||||
img_depth_recon = torch.tensor(
|
||||
img_depth_recon, device=gradx.device, dtype=torch.float32
|
||||
)
|
||||
|
||||
if bg_mask is not None:
|
||||
img_depth_recon = mask_background(img_depth_recon, bg_mask)
|
||||
|
||||
# after integration, img_depth_recon lies between 0. (bdry) and a -ve val (obj depth)
|
||||
# rescale to make max depth as gel depth and obj depth as +ve values
|
||||
img_depth_recon = max_clip(img_depth_recon, max_val=torch.tensor(0.0)) + max_depth
|
||||
|
||||
return img_depth_recon
|
||||
|
||||
|
||||
def depth_to_depth(img_depth, bg_mask=None, boundary=None, params=None):
|
||||
# preproc depth img
|
||||
img_depth = _preproc_depth(img_depth=img_depth.squeeze(), bg_mask=bg_mask)
|
||||
|
||||
# get grad depth
|
||||
gradx, grady = _depth_to_grad_depth(img_depth=img_depth.squeeze(), bg_mask=bg_mask)
|
||||
|
||||
# integrate grad depth
|
||||
img_depth_recon = _integrate_grad_depth(
|
||||
gradx, grady, boundary=boundary, bg_mask=bg_mask
|
||||
)
|
||||
|
||||
return img_depth_recon
|
||||
|
||||
|
||||
def normal_to_depth(
|
||||
img_normal,
|
||||
bg_mask=None,
|
||||
boundary=None,
|
||||
gel_width=0.02,
|
||||
gel_height=0.03,
|
||||
max_depth=0.02,
|
||||
):
|
||||
# preproc normal img
|
||||
img_normal = _preproc_normal(img_normal=img_normal, bg_mask=bg_mask)
|
||||
|
||||
# get grad depth
|
||||
gradx, grady = _normal_to_grad_depth(
|
||||
img_normal=img_normal,
|
||||
gel_width=gel_width,
|
||||
gel_height=gel_height,
|
||||
bg_mask=bg_mask,
|
||||
)
|
||||
|
||||
# integrate grad depth
|
||||
img_depth_recon = _integrate_grad_depth(
|
||||
gradx, grady, boundary=boundary, bg_mask=bg_mask, max_depth=max_depth
|
||||
)
|
||||
|
||||
return img_depth_recon
|
||||
|
||||
|
||||
"""
|
||||
3D registration functions
|
||||
"""
|
||||
|
||||
|
||||
def _fpfh(pcd, normals):
|
||||
pcd.normals = o3d.utility.Vector3dVector(normals)
|
||||
pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature(
|
||||
pcd, o3d.geometry.KDTreeSearchParamHybrid(radius=0.3, max_nn=64)
|
||||
)
|
||||
return pcd_fpfh
|
||||
|
||||
|
||||
def _fast_global_registration(source, target, source_fpfh, target_fpfh):
|
||||
distance_threshold = 0.01
|
||||
result = o3d.pipelines.registration.registration_fast_based_on_feature_matching(
|
||||
source,
|
||||
target,
|
||||
source_fpfh,
|
||||
target_fpfh,
|
||||
o3d.pipelines.registration.FastGlobalRegistrationOption(
|
||||
maximum_correspondence_distance=distance_threshold
|
||||
),
|
||||
)
|
||||
|
||||
transformation = result.transformation
|
||||
metrics = [result.fitness, result.inlier_rmse, result.correspondence_set]
|
||||
|
||||
return transformation, metrics
|
||||
|
||||
|
||||
def fgr(source, target, src_normals, tgt_normals):
|
||||
source_fpfh = _fpfh(source, src_normals)
|
||||
target_fpfh = _fpfh(target, tgt_normals)
|
||||
transformation, metrics = _fast_global_registration(
|
||||
source=source, target=target, source_fpfh=source_fpfh, target_fpfh=target_fpfh
|
||||
)
|
||||
return transformation, metrics
|
||||
|
||||
|
||||
def icp(source, target, T_init=np.eye(4), mcd=0.1, max_iter=50, type="point_to_plane"):
|
||||
if type == "point_to_point":
|
||||
result = o3d.pipelines.registration.registration_icp(
|
||||
source=source,
|
||||
target=target,
|
||||
max_correspondence_distance=mcd,
|
||||
init=T_init,
|
||||
estimation_method=o3d.pipelines.registration.TransformationEstimationPointToPoint(),
|
||||
criteria=o3d.pipelines.registration.ICPConvergenceCriteria(
|
||||
max_iteration=max_iter
|
||||
),
|
||||
)
|
||||
else:
|
||||
result = o3d.pipelines.registration.registration_icp(
|
||||
source=source,
|
||||
target=target,
|
||||
max_correspondence_distance=mcd,
|
||||
init=T_init,
|
||||
estimation_method=o3d.pipelines.registration.TransformationEstimationPointToPlane(),
|
||||
criteria=o3d.pipelines.registration.ICPConvergenceCriteria(
|
||||
max_iteration=max_iter
|
||||
),
|
||||
)
|
||||
|
||||
transformation = result.transformation
|
||||
metrics = [result.fitness, result.inlier_rmse, result.correspondence_set]
|
||||
|
||||
return transformation, metrics
|
||||
|
||||
|
||||
"""
|
||||
Open3D helper functions
|
||||
"""
|
||||
|
||||
|
||||
def remove_outlier_pts(points3d, nb_neighbors=20, std_ratio=10.0, vis=False):
|
||||
points3d_np = (
|
||||
points3d.cpu().detach().numpy() if torch.is_tensor(points3d) else points3d
|
||||
)
|
||||
|
||||
cloud = o3d.geometry.PointCloud()
|
||||
cloud.points = copy.deepcopy(o3d.utility.Vector3dVector(points3d_np.transpose()))
|
||||
cloud_filt, ind_filt = cloud.remove_statistical_outlier(
|
||||
nb_neighbors=nb_neighbors, std_ratio=std_ratio
|
||||
)
|
||||
|
||||
if vis:
|
||||
visualize_inlier_outlier(cloud, ind_filt)
|
||||
|
||||
points3d_filt = np.asarray(cloud_filt.points).transpose()
|
||||
points3d_filt = (
|
||||
torch.tensor(points3d_filt) if torch.is_tensor(points3d) else points3d_filt
|
||||
)
|
||||
|
||||
return points3d_filt
|
||||
|
||||
|
||||
def init_points_to_clouds(clouds, points3d, colors=None):
|
||||
for idx, cloud in enumerate(clouds):
|
||||
points3d_np = (
|
||||
points3d[idx].cpu().detach().numpy()
|
||||
if torch.is_tensor(points3d[idx])
|
||||
else points3d[idx]
|
||||
)
|
||||
cloud.points = copy.deepcopy(
|
||||
o3d.utility.Vector3dVector(points3d_np.transpose())
|
||||
)
|
||||
if colors is not None:
|
||||
cloud.paint_uniform_color(colors[idx])
|
||||
|
||||
return clouds
|
||||
81
digit_depth/third_party/poisson.py
vendored
Normal file
81
digit_depth/third_party/poisson.py
vendored
Normal file
@@ -0,0 +1,81 @@
|
||||
"""
|
||||
poisson_reconstruct.py
|
||||
Fast Poisson Reconstruction in Python
|
||||
|
||||
Copyright (c) 2014 Jack Doerner
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
"""
|
||||
|
||||
import copy
|
||||
import math
|
||||
|
||||
import numpy
|
||||
import scipy
|
||||
import scipy.fftpack
|
||||
|
||||
|
||||
def poisson_reconstruct(grady, gradx, boundarysrc):
|
||||
# Thanks to Dr. Ramesh Raskar for providing the original matlab code from which this is derived
|
||||
# Dr. Raskar's version is available here: http://web.media.mit.edu/~raskar/photo/code.pdf
|
||||
|
||||
# Laplacian
|
||||
gyy = grady[1:, :-1] - grady[:-1, :-1]
|
||||
gxx = gradx[:-1, 1:] - gradx[:-1, :-1]
|
||||
f = numpy.zeros(boundarysrc.shape)
|
||||
f[:-1, 1:] += gxx
|
||||
f[1:, :-1] += gyy
|
||||
|
||||
# Boundary image
|
||||
boundary = copy.deepcopy(boundarysrc) # .copy()
|
||||
boundary[1:-1, 1:-1] = 0
|
||||
|
||||
# Subtract boundary contribution
|
||||
f_bp = (
|
||||
-4 * boundary[1:-1, 1:-1]
|
||||
+ boundary[1:-1, 2:]
|
||||
+ boundary[1:-1, 0:-2]
|
||||
+ boundary[2:, 1:-1]
|
||||
+ boundary[0:-2, 1:-1]
|
||||
)
|
||||
f = f[1:-1, 1:-1] - f_bp
|
||||
|
||||
# Discrete Sine Transform
|
||||
tt = scipy.fftpack.dst(f, norm="ortho")
|
||||
fsin = scipy.fftpack.dst(tt.T, norm="ortho").T
|
||||
|
||||
# Eigenvalues
|
||||
(x, y) = numpy.meshgrid(
|
||||
range(1, f.shape[1] + 1), range(1, f.shape[0] + 1), copy=True
|
||||
)
|
||||
denom = (2 * numpy.cos(math.pi * x / (f.shape[1] + 2)) - 2) + (
|
||||
2 * numpy.cos(math.pi * y / (f.shape[0] + 2)) - 2
|
||||
)
|
||||
|
||||
f = fsin / denom
|
||||
|
||||
# Inverse Discrete Sine Transform
|
||||
tt = scipy.fftpack.idst(f, norm="ortho")
|
||||
img_tt = scipy.fftpack.idst(tt.T, norm="ortho").T
|
||||
|
||||
# New center + old boundary
|
||||
result = copy.deepcopy(boundary)
|
||||
result[1:-1, 1:-1] = img_tt
|
||||
|
||||
return result
|
||||
372
digit_depth/third_party/vis_utils.py
vendored
Normal file
372
digit_depth/third_party/vis_utils.py
vendored
Normal file
@@ -0,0 +1,372 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
|
||||
import copy
|
||||
import logging
|
||||
import time
|
||||
import types
|
||||
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
import torch
|
||||
from attrdict import AttrDict
|
||||
from matplotlib.patches import Circle, Rectangle
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
"""
|
||||
Open3d visualization functions
|
||||
"""
|
||||
|
||||
|
||||
class Visualizer3d:
|
||||
def __init__(self, base_path="", view_params=None, tsleep=0.01):
|
||||
self.vis = o3d.visualization.VisualizerWithKeyCallback()
|
||||
self.vis.create_window(top=0, left=750, width=1080, height=1080)
|
||||
self.tsleep = tsleep
|
||||
|
||||
self.base_path = base_path
|
||||
|
||||
self.view_params = AttrDict(
|
||||
{
|
||||
"fov": 0,
|
||||
"front": [0.0, 0.0, 0.0],
|
||||
"lookat": [0.0, 0.0, 0.0],
|
||||
"up": [0.0, 0.0, 0.0],
|
||||
"zoom": 0.5,
|
||||
}
|
||||
)
|
||||
if view_params is not None:
|
||||
self.view_params = view_params
|
||||
|
||||
self._init_options()
|
||||
|
||||
def _init_options(self):
|
||||
opt = self.vis.get_render_option()
|
||||
opt.show_coordinate_frame = True
|
||||
opt.background_color = np.asarray([0.6, 0.6, 0.6])
|
||||
|
||||
# pause option
|
||||
self.paused = types.SimpleNamespace()
|
||||
self.paused.value = False
|
||||
self.vis.register_key_action_callback(
|
||||
ord("P"),
|
||||
lambda a, b, c: b == 1
|
||||
or setattr(self.paused, "value", not self.paused.value),
|
||||
)
|
||||
|
||||
def _init_geom_cloud(self):
|
||||
return o3d.geometry.PointCloud()
|
||||
|
||||
def _init_geom_frame(self, frame_size=0.01, frame_origin=[0, 0, 0]):
|
||||
return o3d.geometry.TriangleMesh.create_coordinate_frame(
|
||||
size=frame_size, origin=frame_origin
|
||||
)
|
||||
|
||||
def _init_geom_mesh(self, mesh_name, color=None, wireframe=False):
|
||||
mesh = o3d.io.read_triangle_mesh(
|
||||
f"{self.base_path}/local/resources/meshes/{mesh_name}"
|
||||
)
|
||||
mesh.compute_vertex_normals()
|
||||
|
||||
if wireframe:
|
||||
mesh = o3d.geometry.LineSet.create_from_triangle_mesh(mesh)
|
||||
if color is not None:
|
||||
mesh.paint_uniform_color(color)
|
||||
|
||||
return mesh
|
||||
|
||||
def init_geometry(
|
||||
self,
|
||||
geom_type,
|
||||
num_items=1,
|
||||
sizes=None,
|
||||
file_names=None,
|
||||
colors=None,
|
||||
wireframes=None,
|
||||
):
|
||||
geom_list = []
|
||||
for i in range(0, num_items):
|
||||
|
||||
if geom_type == "cloud":
|
||||
geom = self._init_geom_cloud()
|
||||
elif geom_type == "frame":
|
||||
frame_size = sizes[i] if sizes is not None else 0.001
|
||||
geom = self._init_geom_frame(frame_size=frame_size)
|
||||
elif geom_type == "mesh":
|
||||
color = colors[i] if colors is not None else None
|
||||
wireframe = wireframes[i] if wireframes is not None else False
|
||||
geom = self._init_geom_mesh(file_names[i], color, wireframe)
|
||||
else:
|
||||
log.error(
|
||||
f"[Visualizer3d::init_geometry] geom_type {geom_type} not found."
|
||||
)
|
||||
|
||||
geom_list.append(geom)
|
||||
|
||||
return geom_list
|
||||
|
||||
def add_geometry(self, geom_list):
|
||||
|
||||
if geom_list is None:
|
||||
return
|
||||
|
||||
for geom in geom_list:
|
||||
self.vis.add_geometry(geom)
|
||||
|
||||
def remove_geometry(self, geom_list, reset_bounding_box=False):
|
||||
|
||||
if geom_list is None:
|
||||
return
|
||||
|
||||
for geom in geom_list:
|
||||
self.vis.remove_geometry(geom, reset_bounding_box=reset_bounding_box)
|
||||
|
||||
def update_geometry(self, geom_list):
|
||||
for geom in geom_list:
|
||||
self.vis.update_geometry(geom)
|
||||
|
||||
def set_view(self):
|
||||
ctr = self.vis.get_view_control()
|
||||
ctr.change_field_of_view(self.view_params.fov)
|
||||
ctr.set_front(self.view_params.front)
|
||||
ctr.set_lookat(self.view_params.lookat)
|
||||
ctr.set_up(self.view_params.up)
|
||||
ctr.set_zoom(self.view_params.zoom)
|
||||
|
||||
def set_view_cam(self, T):
|
||||
ctr = self.vis.get_view_control()
|
||||
cam = ctr.convert_to_pinhole_camera_parameters()
|
||||
cam.extrinsic = T
|
||||
ctr.convert_from_pinhole_camera_parameters(cam)
|
||||
|
||||
def set_zoom(self):
|
||||
ctr = self.vis.get_view_control()
|
||||
ctr.set_zoom(1.5)
|
||||
|
||||
def rotate_view(self):
|
||||
ctr = self.vis.get_view_control()
|
||||
ctr.rotate(10.0, -0.0)
|
||||
|
||||
def pan_scene(self, max=300):
|
||||
for i in range(0, max):
|
||||
self.rotate_view()
|
||||
self.render()
|
||||
|
||||
def render(self, T=None):
|
||||
|
||||
if T is not None:
|
||||
self.set_view_cam(T)
|
||||
else:
|
||||
self.set_view()
|
||||
|
||||
self.vis.poll_events()
|
||||
self.vis.update_renderer()
|
||||
time.sleep(self.tsleep)
|
||||
|
||||
def transform_geometry_absolute(self, transform_list, geom_list):
|
||||
for idx, geom in enumerate(geom_list):
|
||||
T = transform_list[idx]
|
||||
geom.transform(T)
|
||||
|
||||
def transform_geometry_relative(
|
||||
self, transform_prev_list, transform_curr_list, geom_list
|
||||
):
|
||||
for idx, geom in enumerate(geom_list):
|
||||
T_prev = transform_prev_list[idx]
|
||||
T_curr = transform_curr_list[idx]
|
||||
|
||||
# a. rotate R1^{-1}*R2 about center t1
|
||||
geom.rotate(
|
||||
torch.matmul(torch.inverse(T_prev[0:3, 0:3]), T_curr[0:3, 0:3]),
|
||||
center=(T_prev[0, -1], T_prev[1, -1], T_prev[2, -1]),
|
||||
)
|
||||
|
||||
# b. translate by t2 - t1
|
||||
geom.translate(
|
||||
(
|
||||
T_curr[0, -1] - T_prev[0, -1],
|
||||
T_curr[1, -1] - T_prev[1, -1],
|
||||
T_curr[2, -1] - T_prev[2, -1],
|
||||
)
|
||||
)
|
||||
|
||||
def clear_geometries(self):
|
||||
self.vis.clear_geometries()
|
||||
|
||||
def destroy(self):
|
||||
self.vis.destroy_window()
|
||||
|
||||
|
||||
def visualize_registration(source, target, transformation, vis3d=None, colors=None):
|
||||
source_copy = copy.deepcopy(source)
|
||||
target_copy = copy.deepcopy(target)
|
||||
|
||||
source_copy.transform(transformation)
|
||||
|
||||
clouds = [target_copy, source_copy]
|
||||
|
||||
if colors is not None:
|
||||
clouds[0].paint_uniform_color(colors[1])
|
||||
clouds[1].paint_uniform_color(colors[0])
|
||||
|
||||
vis3d.add_geometry(clouds)
|
||||
vis3d.render()
|
||||
vis3d.remove_geometry(clouds)
|
||||
|
||||
|
||||
def visualize_geometries_o3d(
|
||||
vis3d, clouds=None, frames=None, meshes=None, transforms=None
|
||||
):
|
||||
if meshes is not None:
|
||||
meshes = [copy.deepcopy(mesh) for mesh in meshes]
|
||||
if transforms is not None:
|
||||
vis3d.transform_geometry_absolute(transforms, meshes)
|
||||
|
||||
if frames is not None:
|
||||
frames = [copy.deepcopy(frame) for frame in frames]
|
||||
if transforms is not None:
|
||||
vis3d.transform_geometry_absolute(transforms, frames)
|
||||
|
||||
if clouds is not None:
|
||||
vis3d.add_geometry(clouds)
|
||||
if meshes is not None:
|
||||
vis3d.add_geometry(meshes)
|
||||
if frames is not None:
|
||||
vis3d.add_geometry(frames)
|
||||
|
||||
vis3d.render()
|
||||
|
||||
if clouds is not None:
|
||||
vis3d.remove_geometry(clouds)
|
||||
if meshes is not None:
|
||||
vis3d.remove_geometry(meshes)
|
||||
if frames is not None:
|
||||
vis3d.remove_geometry(frames)
|
||||
|
||||
|
||||
def visualize_inlier_outlier(cloud, ind):
|
||||
inlier_cloud = cloud.select_by_index(ind)
|
||||
outlier_cloud = cloud.select_by_index(ind, invert=True)
|
||||
|
||||
print("Showing outliers (red) and inliers (gray): ")
|
||||
outlier_cloud.paint_uniform_color([1, 0, 0])
|
||||
inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8])
|
||||
o3d.visualization.draw_geometries(
|
||||
[inlier_cloud, outlier_cloud],
|
||||
zoom=0.3412,
|
||||
front=[0.4257, -0.2125, -0.8795],
|
||||
lookat=[2.6172, 2.0475, 1.532],
|
||||
up=[-0.0694, -0.9768, 0.2024],
|
||||
)
|
||||
|
||||
|
||||
"""
|
||||
Optical flow visualization functions
|
||||
"""
|
||||
|
||||
|
||||
def flow_to_color(flow_uv, cvt=cv2.COLOR_HSV2BGR):
|
||||
hsv = np.zeros((flow_uv.shape[0], flow_uv.shape[1], 3), dtype=np.uint8)
|
||||
hsv[:, :, 0] = 255
|
||||
hsv[:, :, 1] = 255
|
||||
mag, ang = cv2.cartToPolar(flow_uv[..., 0], flow_uv[..., 1])
|
||||
hsv[..., 0] = ang * 180 / np.pi / 2
|
||||
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
|
||||
flow_color = cv2.cvtColor(hsv, cvt)
|
||||
|
||||
return flow_color
|
||||
|
||||
|
||||
def flow_to_arrows(img, flow, step=8):
|
||||
img = copy.deepcopy(img)
|
||||
# img = (255 * img).astype(np.uint8)
|
||||
|
||||
h, w = img.shape[:2]
|
||||
y, x = np.mgrid[step / 2 : h : step, step / 2 : w : step].reshape(2, -1).astype(int)
|
||||
fx, fy = 5.0 * flow[y, x].T
|
||||
lines = np.vstack([x, y, x + fx, y + fy]).T.reshape(-1, 2, 2)
|
||||
lines = np.int32(lines + 0.5)
|
||||
cv2.polylines(img, lines, 0, color=(0, 255, 0), thickness=1)
|
||||
for (x1, y1), (x2, y2) in lines:
|
||||
cv2.circle(img, (x1, y1), 1, (0, 255, 0), -1)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
def depth_to_color(depth):
|
||||
gray = (
|
||||
np.clip((depth - depth.min()) / (depth.max() - depth.min()), 0, 1) * 255
|
||||
).astype(np.uint8)
|
||||
return cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
|
||||
|
||||
|
||||
def visualize_flow_cv2(
|
||||
img1, img2, flow_arrow=None, flow_color=None, win_size=(360, 360)
|
||||
):
|
||||
img_disp1 = np.concatenate([img1, img2], axis=1)
|
||||
cv2.namedWindow("img1, img2", cv2.WINDOW_NORMAL)
|
||||
cv2.resizeWindow("img1, img2", 2 * win_size[0], win_size[1])
|
||||
cv2.imshow("img1, img2", img_disp1)
|
||||
|
||||
if flow_arrow is not None:
|
||||
cv2.namedWindow("flow_arrow", cv2.WINDOW_NORMAL)
|
||||
cv2.resizeWindow("flow_arrow", win_size[0], win_size[1])
|
||||
cv2.imshow("flow_arrow", flow_arrow)
|
||||
|
||||
if flow_color is not None:
|
||||
cv2.namedWindow("flow_color", cv2.WINDOW_NORMAL)
|
||||
cv2.resizeWindow("flow_color", win_size[0], win_size[1])
|
||||
cv2.imshow("flow_color", flow_color)
|
||||
|
||||
cv2.waitKey(300)
|
||||
|
||||
|
||||
"""
|
||||
General visualization functions
|
||||
"""
|
||||
|
||||
|
||||
def draw_rectangle(
|
||||
center_x,
|
||||
center_y,
|
||||
size_x,
|
||||
size_y,
|
||||
ang=0.0,
|
||||
edgecolor="dimgray",
|
||||
facecolor=None,
|
||||
linewidth=2,
|
||||
):
|
||||
R = np.array([[np.cos(ang), -np.sin(ang)], [np.sin(ang), np.cos(ang)]])
|
||||
offset = np.matmul(R, np.array([[0.5 * size_x], [0.5 * size_y]]))
|
||||
anchor_x = center_x - offset[0]
|
||||
anchor_y = center_y - offset[1]
|
||||
rect = Rectangle(
|
||||
(anchor_x, anchor_y),
|
||||
size_x,
|
||||
size_y,
|
||||
angle=(np.rad2deg(ang)),
|
||||
facecolor=facecolor,
|
||||
edgecolor=edgecolor,
|
||||
linewidth=linewidth,
|
||||
)
|
||||
plt.gca().add_patch(rect)
|
||||
|
||||
|
||||
def draw_circle(center_x, center_y, radius):
|
||||
circle = Circle((center_x, center_y), color="dimgray", radius=radius)
|
||||
plt.gca().add_patch(circle)
|
||||
|
||||
|
||||
def visualize_imgs(fig, axs, img_list, titles=None, cmap=None):
|
||||
for idx, img in enumerate(img_list):
|
||||
|
||||
if img is None:
|
||||
continue
|
||||
|
||||
im = axs[idx].imshow(img, cmap=cmap)
|
||||
if cmap is not None:
|
||||
fig.colorbar(im, ax=axs[idx])
|
||||
if titles is not None:
|
||||
axs[idx].set_title(titles[idx])
|
||||
2
digit_depth/train/__init__.py
Normal file
2
digit_depth/train/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .color2normal_dataset import Color2NormalDataset
|
||||
from .mlp_model import MLP
|
||||
21
digit_depth/train/color2normal_dataset.py
Normal file
21
digit_depth/train/color2normal_dataset.py
Normal file
@@ -0,0 +1,21 @@
|
||||
import pandas as pd
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
|
||||
class Color2NormalDataset(Dataset):
|
||||
def __init__(self, csv):
|
||||
self.data = pd.read_csv(csv)
|
||||
def __len__(self):
|
||||
return self.data['X'].count()
|
||||
|
||||
def __getitem__(self,idx):
|
||||
x = self.data['X'][idx]/120
|
||||
y = self.data['Y'][idx]/160
|
||||
r = self.data['R'][idx]/255
|
||||
g = self.data['G'][idx]/255
|
||||
b = self.data['B'][idx]/255
|
||||
nx = self.data['Nx'][idx]/255
|
||||
ny = self.data['Ny'][idx]/255
|
||||
nz= self.data['Nz'][idx]/255
|
||||
return torch.tensor((x, y, r, g, b), dtype=torch.float32), torch.tensor((nx, ny, nz), dtype=torch.float32)
|
||||
27
digit_depth/train/mlp_model.py
Normal file
27
digit_depth/train/mlp_model.py
Normal file
@@ -0,0 +1,27 @@
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
dropout_p = 0.05
|
||||
|
||||
def __init__(
|
||||
self, input_size=5, output_size=3, hidden_size=32):
|
||||
super().__init__()
|
||||
|
||||
self.fc1 = nn.Linear(input_size, hidden_size)
|
||||
self.fc2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.fc3 = nn.Linear(hidden_size, hidden_size)
|
||||
self.fc4 = nn.Linear(hidden_size, output_size)
|
||||
self.drop = nn.Dropout(p=self.dropout_p)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = self.drop(x)
|
||||
x = F.relu(self.fc2(x))
|
||||
x = self.drop(x)
|
||||
x = self.fc3(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc4(x)
|
||||
return x
|
||||
49
digit_depth/train/prepost_mlp.py
Normal file
49
digit_depth/train/prepost_mlp.py
Normal file
@@ -0,0 +1,49 @@
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import copy
|
||||
seed = 42
|
||||
torch.seed = seed
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
|
||||
def preproc_mlp(image) -> torch.Tensor:
|
||||
""" Preprocess image for input to model.
|
||||
|
||||
Args: image: OpenCV image in BGR format
|
||||
Return: tensor of shape (R*C,5) where R=320 and C=240 for DIGIT images
|
||||
5-columns are: X,Y,R,G,B
|
||||
|
||||
"""
|
||||
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
img = img / 255.0
|
||||
xy_coords = np.flip(np.column_stack(np.where(np.all(img >= 0, axis=2))), axis=1)
|
||||
rgb = np.reshape(img, (np.prod(img.shape[:2]), 3))
|
||||
pixel_numbers = np.expand_dims(np.arange(1, xy_coords.shape[0] + 1), axis=1)
|
||||
value_base = np.hstack([pixel_numbers, xy_coords, rgb])
|
||||
df_base = pd.DataFrame(value_base, columns=['pixel_number', 'X', 'Y', 'R', 'G', 'B'])
|
||||
df_base['X'] = df_base['X'] / 240
|
||||
df_base['Y'] = df_base['Y'] / 320
|
||||
del df_base['pixel_number']
|
||||
test_tensor = torch.tensor(df_base[['X', 'Y', 'R', 'G', 'B']].values, dtype=torch.float32).to(device)
|
||||
return test_tensor
|
||||
|
||||
|
||||
def post_proc_mlp(model_output: torch.Tensor):
|
||||
""" Postprocess model output to get normal map.
|
||||
|
||||
Args: model_output: torch.Tensor of shape (1,3)
|
||||
Return: two torch.Tensor of shape (1,3)
|
||||
|
||||
"""
|
||||
test_np = model_output.reshape(320, 240, 3)
|
||||
normal = copy.deepcopy(test_np) # surface normal image
|
||||
test_np = torch.tensor(test_np,
|
||||
dtype=torch.float32) # convert to torch tensor for later processing in gradient computation
|
||||
test_np = test_np.permute(2, 0, 1) # swap axes to (3,320,240)
|
||||
test_np = test_np # convert to uint8 for visualization
|
||||
return test_np, normal
|
||||
|
||||
|
||||
25
requirements.txt
Normal file
25
requirements.txt
Normal file
@@ -0,0 +1,25 @@
|
||||
certifi==2022.6.15
|
||||
digit-interface==0.2.1
|
||||
numpy==1.23.1
|
||||
opencv-python~=4.5.3.56
|
||||
pip==22.1.2
|
||||
PyQt5==5.15.7
|
||||
PyQt5-Qt5==5.15.2
|
||||
PyQt5-sip==12.11.0
|
||||
pyudev==0.23.2
|
||||
setuptools==61.2.0
|
||||
six==1.16.0
|
||||
wheel==0.37.1
|
||||
torch~=1.12.0
|
||||
pandas~=1.4.3
|
||||
pillow~=9.2.0
|
||||
torchvision~=0.13.0
|
||||
scipy~=1.9.0
|
||||
open3d~=0.15.2
|
||||
matplotlib~=3.5.2
|
||||
attrdict~=2.0.1
|
||||
hydra~=2.5
|
||||
imageio~=2.21.0
|
||||
scikit-learn~=1.1.1
|
||||
wandb~=0.13.0
|
||||
tqdm~=4.64.0
|
||||
0
scripts/__init__.py
Normal file
0
scripts/__init__.py
Normal file
103
scripts/create_image_dataset.py
Normal file
103
scripts/create_image_dataset.py
Normal file
@@ -0,0 +1,103 @@
|
||||
"""
|
||||
Creates color+normal datasets based on annotation file.
|
||||
The datasets can be used to train MLP, CycleGAN, Pix2Pix models.
|
||||
"""
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import hydra
|
||||
import imageio
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from digit_depth.dataio.create_csv import (combine_csv, create_pixel_csv,
|
||||
create_train_test_csv)
|
||||
from digit_depth.dataio.data_loader import data_loader
|
||||
from digit_depth.dataio.generate_sphere_gt_normals import generate_sphere_gt_normals
|
||||
from digit_depth.third_party import data_utils
|
||||
|
||||
base_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
|
||||
|
||||
|
||||
@hydra.main(config_path=f"{base_path}/config", config_name="rgb_to_normal.yaml", version_base=None)
|
||||
def main(cfg):
|
||||
normal_dataloader, normal_dataset = data_loader(
|
||||
dir_dataset=os.path.join(base_path, "images"), params=cfg.dataloader
|
||||
)
|
||||
dirs = [
|
||||
f"{base_path}/datasets/A/imgs",
|
||||
f"{base_path}/datasets/B/imgs",
|
||||
f"{base_path}/datasets/A/csv",
|
||||
f"{base_path}/datasets/B/csv",
|
||||
f"{base_path}/datasets/train_test_split",
|
||||
]
|
||||
for dir in dirs:
|
||||
print(f"Creating directory: {dir}")
|
||||
os.makedirs(f"{dir}", exist_ok=True)
|
||||
# iterate over images
|
||||
img_idx = 0
|
||||
radius_bearing = np.int32(0.5 * 6.0 * cfg.mm_to_pixel)
|
||||
while img_idx < len(normal_dataset):
|
||||
# read img + annotations
|
||||
data = normal_dataset[img_idx]
|
||||
if cfg.dataloader.annot_flag:
|
||||
img, annot = data
|
||||
if annot.shape[0] == 0:
|
||||
img_idx = img_idx + 1
|
||||
continue
|
||||
else:
|
||||
img = data
|
||||
|
||||
# get annotation circle params
|
||||
if cfg.dataloader.annot_flag:
|
||||
annot_np = annot.cpu().detach().numpy()
|
||||
center_y, center_x, radius_annot = (
|
||||
annot_np[0][1],
|
||||
annot_np[0][0],
|
||||
annot_np[0][2],
|
||||
)
|
||||
else:
|
||||
center_y, center_x, radius_annot = 0, 0, 0
|
||||
|
||||
img_color_np = (img.permute(2, 1, 0).cpu().detach().numpy()) # (3,320,240) -> (240,320,3)
|
||||
|
||||
# apply foreground mask
|
||||
fg_mask = np.zeros(img_color_np.shape[:2], dtype="uint8")
|
||||
fg_mask = cv2.circle(fg_mask, (center_x, center_y), radius_annot, 255, -1)
|
||||
|
||||
# 1. rgb -> normal (generate gt surface normals)
|
||||
img_mask = cv2.bitwise_and(img_color_np, img_color_np, mask=fg_mask)
|
||||
img_normal_np = generate_sphere_gt_normals(
|
||||
img_mask, center_x, center_y, radius=radius_bearing
|
||||
)
|
||||
|
||||
# 2. downsample and convert to NumPy: (320,240,3) -> (160,120,3)
|
||||
img_normal_np = data_utils.interpolate_img(
|
||||
img=torch.tensor(img_normal_np).permute(2, 0, 1), rows=160, cols=120)
|
||||
img_normal_np = img_normal_np.permute(1, 2, 0).cpu().detach().numpy()
|
||||
img_color_ds = data_utils.interpolate_img(
|
||||
img=torch.tensor(img_color_np).permute(2, 0, 1), rows=160, cols=120)
|
||||
img_color_np = img_color_ds.permute(1, 2, 0).cpu().detach().numpy()
|
||||
|
||||
# 3. save csv files for color and normal images
|
||||
|
||||
if cfg.dataset.save_dataset:
|
||||
imageio.imwrite(
|
||||
f"{dirs[0]}/{img_idx:04d}.png", (img_color_np * 255).astype(np.uint8)
|
||||
)
|
||||
imageio.imwrite(f"{dirs[1]}/{img_idx:04d}.png", (img_normal_np*255).astype(np.uint8))
|
||||
print(f"Saved image {img_idx:04d}")
|
||||
img_idx += 1
|
||||
|
||||
# post-process CSV files and create train/test split
|
||||
create_pixel_csv( img_dir=dirs[0], save_dir=dirs[2], img_type="color")
|
||||
create_pixel_csv(img_dir=dirs[1], save_dir=dirs[3], img_type="normal")
|
||||
combine_csv(dirs[2],img_type="color")
|
||||
combine_csv(dirs[3],img_type="normal")
|
||||
create_train_test_csv(color_path=f'{dirs[2]}/combined.csv',
|
||||
normal_path=f'{dirs[3]}/combined.csv',
|
||||
save_dir=dirs[4])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
84
scripts/depth.py
Normal file
84
scripts/depth.py
Normal file
@@ -0,0 +1,84 @@
|
||||
""" Publishes a ROS topic with name /depth/compressed and shows the image on OpenCV window.
|
||||
Issues: rqt_image_view is not showing the image due to some data conversion issues but OpenCV is showing the image."""
|
||||
import os
|
||||
import cv2
|
||||
import hydra
|
||||
import rospy
|
||||
from sensor_msgs.msg import Image
|
||||
from cv_bridge import CvBridge
|
||||
from sensor_msgs.msg import CompressedImage
|
||||
from digit_depth.third_party import geom_utils
|
||||
from digit_depth.digit import DigitSensor
|
||||
from digit_depth.train import MLP
|
||||
from digit_depth.train.prepost_mlp import *
|
||||
from PIL import Image
|
||||
seed = 42
|
||||
torch.seed = seed
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
base_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
|
||||
|
||||
|
||||
class ImageFeature:
|
||||
def __init__(self):
|
||||
# topic where we publish
|
||||
|
||||
self.image_pub = rospy.Publisher("/depth/compressed",
|
||||
CompressedImage, queue_size=10)
|
||||
self.br = CvBridge()
|
||||
|
||||
|
||||
@hydra.main(config_path="/home/shuk/digit-depth/config", config_name="rgb_to_normal.yaml", version_base=None)
|
||||
def show_depth(cfg):
|
||||
model = torch.load(cfg.model_path).to(device)
|
||||
model.eval()
|
||||
ic = ImageFeature()
|
||||
br = CvBridge()
|
||||
rospy.init_node('depth_node', anonymous=True)
|
||||
# base image depth map
|
||||
base_img = cv2.imread(cfg.base_img_path)
|
||||
base_img = preproc_mlp(base_img)
|
||||
base_img_proc = model(base_img).cpu().detach().numpy()
|
||||
base_img_proc, normal_base = post_proc_mlp(base_img_proc)
|
||||
# get gradx and grady
|
||||
gradx_base, grady_base = geom_utils._normal_to_grad_depth(img_normal=base_img_proc, gel_width=cfg.sensor.gel_width,
|
||||
gel_height=cfg.sensor.gel_height, bg_mask=None)
|
||||
|
||||
# reconstruct depth
|
||||
img_depth_base = geom_utils._integrate_grad_depth(gradx_base, grady_base, boundary=None, bg_mask=None,
|
||||
max_depth=0.0237)
|
||||
img_depth_base = img_depth_base.detach().cpu().numpy() # final depth image for base image
|
||||
# setup digit sensor
|
||||
digit = DigitSensor(30, "QVGA", cfg.sensor.serial_num)
|
||||
digit_call = digit()
|
||||
while not rospy.is_shutdown():
|
||||
frame = digit_call.get_frame()
|
||||
img_np = preproc_mlp(frame)
|
||||
img_np = model(img_np).detach().cpu().numpy()
|
||||
img_np, normal_img = post_proc_mlp(img_np)
|
||||
# get gradx and grady
|
||||
gradx_img, grady_img = geom_utils._normal_to_grad_depth(img_normal=img_np, gel_width=cfg.sensor.gel_width,
|
||||
gel_height=cfg.sensor.gel_height,bg_mask=None)
|
||||
# reconstruct depth
|
||||
img_depth = geom_utils._integrate_grad_depth(gradx_img, grady_img, boundary=None, bg_mask=None,max_depth=0.0237)
|
||||
img_depth = img_depth.detach().cpu().numpy() # final depth image for current image
|
||||
# get depth difference
|
||||
depth_diff = (img_depth - img_depth_base)*500
|
||||
# cv2.imshow("depth", depth_diff)
|
||||
img_depth[img_depth == 0.0237] = 0
|
||||
img_depth[img_depth != 0] = (img_depth[img_depth != 0]-0.0237)*(-1)
|
||||
img_depth = img_depth*1000
|
||||
cv2.imshow("depth", depth_diff)
|
||||
msg = br.cv2_to_compressed_imgmsg(img_depth, "png")
|
||||
ic.image_pub.publish(msg)
|
||||
now = rospy.get_rostime()
|
||||
rospy.loginfo("published depth image at {}".format(now))
|
||||
cv2.waitKey(1)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
rospy.loginfo("starting...")
|
||||
show_depth()
|
||||
|
||||
69
scripts/label_data.py
Normal file
69
scripts/label_data.py
Normal file
@@ -0,0 +1,69 @@
|
||||
"""
|
||||
Labels images for training MLP depth reconstruction model.
|
||||
Specify the image folder containing the circle images and csv folder to store the labels ( img_names, center_x, center_y, radius ).
|
||||
The image datasets should include the rolling of a sphere with a known radius.
|
||||
|
||||
Directions:
|
||||
-- Click left mouse button to select the center of the sphere.
|
||||
-- Click right mouse button to select the circumference of the sphere.
|
||||
-- Double click ESC to move to the next image.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import csv
|
||||
import glob
|
||||
import math
|
||||
import os
|
||||
|
||||
import cv2
|
||||
|
||||
base_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
|
||||
|
||||
|
||||
def click_and_store(event, x, y, flags, param):
|
||||
global count
|
||||
global center_x, center_y, circumference_x, circumference_y, radii
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
center_x = x
|
||||
center_y = y
|
||||
print("center_x: ", x)
|
||||
print("center_y: ", y)
|
||||
cv2.circle(image, (x, y), 3, (0, 0, 255), -1)
|
||||
cv2.imshow("image", image)
|
||||
elif event == cv2.EVENT_RBUTTONDOWN:
|
||||
circumference_x = x
|
||||
circumference_y = y
|
||||
print("circumference_x: ", x)
|
||||
print("circumference_y: ", y)
|
||||
cv2.circle(image, (x, y), 3, (0, 0, 255), -1)
|
||||
cv2.imshow("image", image)
|
||||
radius = math.sqrt(
|
||||
(center_x - circumference_x) ** 2 + (center_y - circumference_y) ** 2
|
||||
)
|
||||
print("radius: ", int(radius))
|
||||
radii.append(int(radius))
|
||||
with open(filename, "a") as csvfile:
|
||||
writer = csv.writer(csvfile)
|
||||
print("Writing>>")
|
||||
count += 1
|
||||
writer.writerow([img_name, center_x, center_y, int(radius)])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
argparser = argparse.ArgumentParser()
|
||||
argparser.add_argument("--folder", type=str, default="images", help="folder containing images")
|
||||
argparser.add_argument("--csv", type=str, default=f"{base_path}/csv/annotate.csv", help="csv file to store results")
|
||||
args = argparser.parse_args()
|
||||
filename = args.csv
|
||||
img_folder = os.path.join(base_path, args.folder)
|
||||
img_files = sorted(glob.glob(f"{img_folder}/*.png"))
|
||||
os.makedirs(os.path.join(base_path, "csv"), exist_ok=True)
|
||||
center_x, center_y, circumference_x, circumference_y, radii = [], [], [], [], []
|
||||
count = 0
|
||||
for img in img_files:
|
||||
image = cv2.imread(img)
|
||||
img_name = img
|
||||
cv2.imshow("image", image)
|
||||
cv2.setMouseCallback("image", click_and_store, image)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
65
scripts/point_cloud.py
Normal file
65
scripts/point_cloud.py
Normal file
@@ -0,0 +1,65 @@
|
||||
""" Publishes a ROS topic with name /depth/compressed and shows the image on OpenCV window.
|
||||
Issues: rqt_image_view is not showing the image due to some data conversion issues but OpenCV is showing the image."""
|
||||
import os
|
||||
import hydra
|
||||
import open3d as o3d
|
||||
from digit_depth.third_party import geom_utils
|
||||
from digit_depth.digit import DigitSensor
|
||||
from digit_depth.train import MLP
|
||||
from digit_depth.train.prepost_mlp import *
|
||||
from attrdict import AttrDict
|
||||
from digit_depth.third_party import vis_utils
|
||||
seed = 42
|
||||
torch.seed = seed
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
base_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
|
||||
|
||||
|
||||
@hydra.main(config_path="/home/shuk/digit-depth/config", config_name="rgb_to_normal.yaml", version_base=None)
|
||||
def show_point_cloud(cfg):
|
||||
view_params = AttrDict({'fov': 60, 'front': [-0.1, 0.1, 0.1], 'lookat': [
|
||||
-0.001, -0.01, 0.01], 'up': [0.04, -0.05, 0.190], 'zoom': 2.5})
|
||||
vis3d = vis_utils.Visualizer3d(base_path=base_path, view_params=view_params)
|
||||
|
||||
# projection params
|
||||
T_cam_offset = torch.tensor(cfg.sensor.T_cam_offset)
|
||||
proj_mat = torch.tensor(cfg.sensor.P)
|
||||
model = torch.load(cfg.model_path).to(device)
|
||||
model.eval()
|
||||
# base image depth map
|
||||
base_img = cv2.imread(cfg.base_img_path)
|
||||
base_img = preproc_mlp(base_img)
|
||||
base_img_proc = model(base_img).cpu().detach().numpy()
|
||||
base_img_proc, normal_base = post_proc_mlp(base_img_proc)
|
||||
# get gradx and grady
|
||||
gradx_base, grady_base = geom_utils._normal_to_grad_depth(img_normal=base_img_proc, gel_width=cfg.sensor.gel_width,
|
||||
gel_height=cfg.sensor.gel_height, bg_mask=None)
|
||||
|
||||
# reconstruct depth
|
||||
img_depth_base = geom_utils._integrate_grad_depth(gradx_base, grady_base, boundary=None, bg_mask=None,
|
||||
max_depth=0.0237)
|
||||
img_depth_base = img_depth_base.detach().cpu().numpy() # final depth image for base image
|
||||
# setup digit sensor
|
||||
digit = DigitSensor(30, "QVGA", cfg.sensor.serial_num)
|
||||
digit_call = digit()
|
||||
while True:
|
||||
frame = digit_call.get_frame()
|
||||
img_np = preproc_mlp(frame)
|
||||
img_np = model(img_np).detach().cpu().numpy()
|
||||
img_np, normal_img = post_proc_mlp(img_np)
|
||||
# get gradx and grady
|
||||
gradx_img, grady_img = geom_utils._normal_to_grad_depth(img_normal=img_np, gel_width=cfg.sensor.gel_width,
|
||||
gel_height=cfg.sensor.gel_height,bg_mask=None)
|
||||
# reconstruct depth
|
||||
img_depth = geom_utils._integrate_grad_depth(gradx_img, grady_img, boundary=None, bg_mask=None, max_depth=0.0237)
|
||||
view_mat = torch.eye(4) # torch.inverse(T_cam_offset)
|
||||
# Project depth to 3D
|
||||
points3d = geom_utils.depth_to_pts3d(depth=img_depth, P=proj_mat, V=view_mat, params=cfg.sensor)
|
||||
points3d = geom_utils.remove_background_pts(points3d, bg_mask=None)
|
||||
cloud = o3d.geometry.PointCloud()
|
||||
clouds = geom_utils.init_points_to_clouds(clouds=[copy.deepcopy(cloud)], points3d=[points3d])
|
||||
vis_utils.visualize_geometries_o3d(vis3d=vis3d, clouds=clouds)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
show_point_cloud()
|
||||
49
scripts/record.py
Normal file
49
scripts/record.py
Normal file
@@ -0,0 +1,49 @@
|
||||
"""
|
||||
Script for capturing individual frames while the camera output is displayed.
|
||||
-- Press SPACEBAR to capture
|
||||
-- Press ESC to terminate the program.
|
||||
"""
|
||||
import argparse
|
||||
import os
|
||||
import os.path
|
||||
|
||||
import cv2
|
||||
|
||||
from digit_depth.digit.digit_sensor import DigitSensor
|
||||
|
||||
base_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
|
||||
|
||||
|
||||
def record_frame(digit_sensor, dir_name: str):
|
||||
img_counter = len(os.listdir(dir_name))
|
||||
digit_call = digit_sensor()
|
||||
while True:
|
||||
frame = digit_call.get_frame()
|
||||
cv2.imshow("Capture Frame", frame)
|
||||
k = cv2.waitKey(1)
|
||||
if k % 256 == 27:
|
||||
# ESC hit
|
||||
print("Escape hit, closing...")
|
||||
break
|
||||
elif k % 256 == 32:
|
||||
# SPACEBAR hit
|
||||
img_name = "{}/{:0>4}.png".format(dir_name, img_counter)
|
||||
cv2.imwrite(img_name, frame)
|
||||
print("{} written!".format(img_name))
|
||||
img_counter += 1
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
argparser = argparse.ArgumentParser()
|
||||
argparser.add_argument("--fps", type=int, default=30, help="Frames per second. Max:60 on QVGA")
|
||||
argparser.add_argument("--resolution", type=str, default="QVGA", help="QVGA, VGA")
|
||||
argparser.add_argument("--serial_num", type=str, default="D00001", help="Serial number of DIGIT")
|
||||
args = argparser.parse_args()
|
||||
|
||||
if not os.path.exists(os.path.join(base_path, "images")):
|
||||
os.makedirs(os.path.join(base_path, "images"), exist_ok=True)
|
||||
print("Directory {} created for saving images".format(os.path.join(base_path, "images")))
|
||||
digit = DigitSensor(args.fps, args.resolution, args.serial_num)
|
||||
|
||||
record_frame(digit, os.path.join(base_path, "images"))
|
||||
54
scripts/ros/depth_value_pub.py
Normal file
54
scripts/ros/depth_value_pub.py
Normal file
@@ -0,0 +1,54 @@
|
||||
""" Node to publish max depth value when gel is deformed """
|
||||
import os
|
||||
import hydra
|
||||
import rospy
|
||||
from std_msgs.msg import Float32
|
||||
|
||||
from digit_depth.third_party import geom_utils
|
||||
from digit_depth.digit.digit_sensor import DigitSensor
|
||||
from digit_depth.train.mlp_model import MLP
|
||||
from digit_depth.train.prepost_mlp import *
|
||||
seed = 42
|
||||
torch.seed = seed
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
BASE_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
|
||||
|
||||
@hydra.main(config_path=f"{BASE_PATH}/config", config_name="rgb_to_normal.yaml", version_base=None)
|
||||
def print_depth(cfg):
|
||||
model = torch.load(cfg.model_path).to(device)
|
||||
model.eval()
|
||||
# setup digit sensor
|
||||
digit = DigitSensor(30, "QVGA", cfg.sensor.serial_num)
|
||||
digit_call = digit()
|
||||
pub = rospy.Publisher('chatter', Float32, queue_size=1)
|
||||
rospy.init_node('depth', anonymous=True)
|
||||
try:
|
||||
while not rospy.is_shutdown():
|
||||
frame = digit_call.get_frame()
|
||||
img_np = preproc_mlp(frame)
|
||||
img_np = model(img_np).detach().cpu().numpy()
|
||||
img_np, normal_img = post_proc_mlp(img_np)
|
||||
|
||||
# get gradx and grady
|
||||
gradx_img, grady_img = geom_utils._normal_to_grad_depth(img_normal=img_np, gel_width=cfg.sensor.gel_width,
|
||||
gel_height=cfg.sensor.gel_height,bg_mask=None)
|
||||
# reconstruct depth
|
||||
img_depth = geom_utils._integrate_grad_depth(gradx_img, grady_img, boundary=None, bg_mask=None,max_depth=0.0237)
|
||||
img_depth = img_depth.detach().cpu().numpy().flatten()
|
||||
|
||||
# get max depth value
|
||||
max_depth = np.min(img_depth)
|
||||
rospy.loginfo(f"max:{max_depth}")
|
||||
img_depth_calibrated = np.abs((max_depth - 0.02362))
|
||||
|
||||
# publish max depth value
|
||||
pub.publish(Float32(img_depth_calibrated*10000)) # convert to mm
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("Shutting down")
|
||||
digit().disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
rospy.loginfo("starting...")
|
||||
print_depth()
|
||||
52
scripts/ros/digit_image_pub.py
Normal file
52
scripts/ros/digit_image_pub.py
Normal file
@@ -0,0 +1,52 @@
|
||||
""" ROS image publisher for DIGIT sensor """
|
||||
|
||||
import argparse
|
||||
# OpenCV
|
||||
import cv2
|
||||
from PIL import Image as Im
|
||||
from sensor_msgs.msg import Image
|
||||
from cv_bridge import CvBridge
|
||||
|
||||
# Ros libraries
|
||||
import roslib
|
||||
import rospy
|
||||
|
||||
# Ros Messages
|
||||
from sensor_msgs.msg import CompressedImage
|
||||
from sensor_msgs.msg import std_msgs
|
||||
from digit_depth.digit.digit_sensor import DigitSensor
|
||||
|
||||
|
||||
class ImageFeature:
|
||||
|
||||
def __init__(self):
|
||||
# topic where we publish
|
||||
|
||||
self.image_pub = rospy.Publisher("/output/image_raw/compressed",
|
||||
CompressedImage, queue_size=10)
|
||||
self.br = CvBridge()
|
||||
|
||||
|
||||
def rgb_pub(digit_sensor: DigitSensor):
|
||||
# Initializes and cleanup ros node
|
||||
ic = ImageFeature()
|
||||
rospy.init_node('image_feature', anonymous=True)
|
||||
digit_call = digit_sensor()
|
||||
br = CvBridge()
|
||||
while True:
|
||||
frame = digit_call.get_frame()
|
||||
msg = br.cv2_to_compressed_imgmsg(frame, "png")
|
||||
ic.image_pub.publish(msg)
|
||||
rospy.loginfo("published ...")
|
||||
if cv2.waitKey(1) == 27:
|
||||
break
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
argparser = argparse.ArgumentParser()
|
||||
argparser.add_argument("--fps", type=int, default=30)
|
||||
argparser.add_argument("--resolution", type=str, default="QVGA")
|
||||
argparser.add_argument("--serial_num", type=str, default="D00001")
|
||||
args, unknown = argparser.parse_known_args()
|
||||
digit = DigitSensor(args.fps, args.resolution, args.serial_num)
|
||||
rgb_pub(digit)
|
||||
112
scripts/train_mlp.py
Normal file
112
scripts/train_mlp.py
Normal file
@@ -0,0 +1,112 @@
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import wandb
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm import tqdm
|
||||
|
||||
from digit_depth.train import MLP, Color2NormalDataset
|
||||
|
||||
seed = 42
|
||||
torch.seed = seed
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
base_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
|
||||
|
||||
|
||||
def train(train_loader, epochs, lr):
|
||||
model = MLP().to(device)
|
||||
wandb.init(project="MLP", name="Color 2 Normal model train")
|
||||
wandb.watch(model, log_freq=100)
|
||||
|
||||
model.train()
|
||||
|
||||
learning_rate = lr
|
||||
# Loss and optimizer
|
||||
criterion = nn.MSELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
num_epochs = epochs
|
||||
avg_loss=0.0
|
||||
loss_record=[]
|
||||
cnt=0
|
||||
total_step = len(train_loader)
|
||||
for epoch in tqdm(range(1, 1 + num_epochs)):
|
||||
for i, (data, labels) in enumerate(train_loader):
|
||||
# Move tensors to the configured device
|
||||
data = data.to(device)
|
||||
labels = labels.to(device)
|
||||
|
||||
outputs = model(data)
|
||||
loss = criterion(outputs, labels)
|
||||
avg_loss += loss.item()
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
cnt+=1
|
||||
|
||||
if (i + 1) % 1 == 0:
|
||||
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
|
||||
.format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))
|
||||
loss_record.append(loss.item())
|
||||
# wandb.log({"Mini-batch loss": loss})
|
||||
# wandb.log({'Running test loss': avg_loss / cnt})
|
||||
os.makedirs(f"{base_path}/models", exist_ok=True)
|
||||
print(f"Saving model to {base_path}/models/")
|
||||
torch.save(model,
|
||||
f"{base_path}/models/mlp.ckpt")
|
||||
|
||||
|
||||
def test(test_loader,criterion):
|
||||
model = torch.load(
|
||||
f"{base_path}/models/mlp.ckpt").to(
|
||||
device)
|
||||
model.eval()
|
||||
wandb.init(project="MLP", name="Color 2 Normal model test")
|
||||
wandb.watch(model, log_freq=100)
|
||||
model.eval()
|
||||
avg_loss = 0.0
|
||||
cnt = 0
|
||||
with torch.no_grad():
|
||||
for idx, (data, labels) in enumerate(test_loader):
|
||||
data = data.to(device)
|
||||
labels = labels.to(device)
|
||||
outputs = model(data)
|
||||
loss = criterion(outputs, labels)
|
||||
avg_loss += loss.item()
|
||||
cnt=cnt+1
|
||||
# wandb.log({"Mini-batch test loss": loss})
|
||||
avg_loss = avg_loss / cnt
|
||||
print("Test loss: {:.4f}".format(avg_loss))
|
||||
# wandb.log({'Average Test loss': avg_loss})
|
||||
|
||||
|
||||
def main():
|
||||
argparser = argparse.ArgumentParser()
|
||||
argparser.add_argument('--mode', type=str, default='train', help='train or test')
|
||||
argparser.add_argument('--batch_size', type=int, default=10000, help='batch size')
|
||||
argparser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate')
|
||||
argparser.add_argument('--epochs', type=int, default=2, help='epochs')
|
||||
argparser.add_argument('--train_path', type=str, default=f'{base_path}/datasets/train_test_split/train.csv',
|
||||
help='data path')
|
||||
argparser.add_argument('--test_path', type=str, default=f'{base_path}/datasets/train_test_split/test.csv',
|
||||
help='test data path')
|
||||
option = argparser.parse_args()
|
||||
|
||||
if option.mode == "train":
|
||||
train_set = Color2NormalDataset(
|
||||
option.train_path)
|
||||
train_loader = DataLoader(train_set, batch_size=option.batch_size, shuffle=True)
|
||||
print("Training set size: ", len(train_set))
|
||||
train(train_loader, option.epochs,option.learning_rate)
|
||||
elif option.mode == "test":
|
||||
test_set = Color2NormalDataset(
|
||||
option.test_path)
|
||||
test_loader = DataLoader(test_set, batch_size=option.batch_size, shuffle=True)
|
||||
criterion = nn.MSELoss()
|
||||
test(test_loader, criterion)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
17
setup.py
Normal file
17
setup.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name="digit-depth",
|
||||
version="0.1",
|
||||
description="Digit Depth Reconstruction",
|
||||
url="https://github.com/vocdex/digit-depth",
|
||||
author="Shukrullo Nazirjonov",
|
||||
author_email="nazirjonovsh2000@gmail.com",
|
||||
license="MIT",
|
||||
install_requires=['numpy', 'opencv-python', 'torch'],
|
||||
packages=find_packages(),
|
||||
zip_safe=False,
|
||||
extras_require={
|
||||
'testing': ['pytest'],
|
||||
},
|
||||
)
|
||||
0
tests/__init__.py
Normal file
0
tests/__init__.py
Normal file
15
tests/test_digit.py
Normal file
15
tests/test_digit.py
Normal file
@@ -0,0 +1,15 @@
|
||||
import unittest
|
||||
|
||||
from digit_interface import Digit
|
||||
|
||||
from digit_depth import DigitSensor
|
||||
|
||||
|
||||
class TestDigit(unittest.TestCase):
|
||||
def test_digit_sensor(self):
|
||||
fps = 30
|
||||
resolution = "QVGA"
|
||||
serial_num = "12345"
|
||||
digit_sensor = DigitSensor(fps, resolution, serial_num)
|
||||
digit = digit_sensor()
|
||||
self.assertIsInstance(digit, Digit)
|
||||
16
tests/test_handlers.py
Normal file
16
tests/test_handlers.py
Normal file
@@ -0,0 +1,16 @@
|
||||
import unittest
|
||||
import torch
|
||||
from PIL import Image
|
||||
from digit_depth.handlers import image
|
||||
|
||||
class Handler(unittest.TestCase):
|
||||
"""Test for various data handlers"""
|
||||
def test_tensor_to_PIL(self):
|
||||
instance = image.ImageHandler(Image.open("/home/shuk/digit-depth/images/0001.png"), "RGB")
|
||||
tensor = torch.randn(1, 3, 224, 224)
|
||||
pil_image = instance.tensor_to_PIL()
|
||||
self.assertEqual(pil_image.size, (224, 224))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
26
tests/test_train.py
Normal file
26
tests/test_train.py
Normal file
@@ -0,0 +1,26 @@
|
||||
import os
|
||||
import unittest
|
||||
import torch
|
||||
from digit_depth.train import MLP, Color2NormalDataset
|
||||
|
||||
base_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
|
||||
|
||||
|
||||
class Train(unittest.TestCase):
|
||||
def test_shape(self):
|
||||
model = MLP()
|
||||
x = torch.randn(1, 5)
|
||||
y = model(x)
|
||||
self.assertEqual(torch.Size([1, 3]), y.size())
|
||||
|
||||
def test_dataset(self):
|
||||
dataset = Color2NormalDataset(f'{base_path}/datasets/train_test_split/train.csv')
|
||||
x, y = dataset[0]
|
||||
self.assertEqual(torch.Size([5]), x.size())
|
||||
self.assertEqual(torch.Size([3]), y.size())
|
||||
self.assertLessEqual(x.max(), 1)
|
||||
self.assertGreaterEqual(x.min(), 0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Reference in New Issue
Block a user