Merge branch 'master' of http://git.wxchen.site/wxchen/maintain into da
This commit is contained in:
@@ -1,4 +1,8 @@
|
||||
<<<<<<< HEAD
|
||||
#! /home/da/miniconda3/envs/gsmini/bin/python
|
||||
=======
|
||||
#! /home/wxchen/.conda/envs/gsmini/bin/python
|
||||
>>>>>>> 68e8ba7901e9856d4a89304bc278ab76e8cc0a34
|
||||
|
||||
import rospy
|
||||
import numpy as np
|
||||
|
||||
@@ -1,148 +0,0 @@
|
||||
#! /home/wxchen/.conda/envs/gsmini/bin/python
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
import rospy
|
||||
from sensor_msgs.msg import Image
|
||||
import message_filters
|
||||
from cv_bridge import CvBridge, CvBridgeError
|
||||
import rospkg
|
||||
|
||||
MIN_MATCH_COUNT = 10
|
||||
pkg_path = rospkg.RosPack().get_path('maintain')
|
||||
rospy.loginfo(pkg_path)
|
||||
img_template = cv.imread(pkg_path + '/scripts/tt.png',0)
|
||||
|
||||
def callback(rgb, depth):
|
||||
rospy.loginfo("callback")
|
||||
bridge = CvBridge()
|
||||
# rospy.loginfo(rgb.header.stamp)
|
||||
# rospy.loginfo(depth.header.stamp)
|
||||
try:
|
||||
rgb_image = bridge.imgmsg_to_cv2(rgb, 'bgr8')
|
||||
depth_image = bridge.imgmsg_to_cv2(depth, '16UC1')
|
||||
|
||||
img_matcher = matcher(rgb_image)
|
||||
cv.imshow("img_matcher", img_matcher)
|
||||
cv.waitKey(1000)
|
||||
|
||||
except CvBridgeError as e:
|
||||
print(e)
|
||||
|
||||
def matcher(img):
|
||||
|
||||
try:
|
||||
# Initiate SIFT detector
|
||||
sift = cv.SIFT_create()
|
||||
|
||||
# find the keypoints and descriptors with SIFT
|
||||
kp1, des1 = sift.detectAndCompute(img_template,None)
|
||||
kp2, des2 = sift.detectAndCompute(img,None)
|
||||
|
||||
FLANN_INDEX_KDTREE = 1
|
||||
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
|
||||
search_params = dict(checks = 50)
|
||||
|
||||
flann = cv.FlannBasedMatcher(index_params, search_params)
|
||||
matches = flann.knnMatch(des1,des2,k=2)
|
||||
|
||||
# store all the good matches as per Lowe's ratio test.
|
||||
good = []
|
||||
for m,n in matches:
|
||||
if m.distance < 0.7*n.distance:
|
||||
good.append(m)
|
||||
|
||||
if len(good)>MIN_MATCH_COUNT:
|
||||
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
|
||||
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
|
||||
|
||||
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0)
|
||||
matchesMask = mask.ravel().tolist()
|
||||
|
||||
h,w = img_template.shape
|
||||
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
|
||||
dst = cv.perspectiveTransform(pts,M)
|
||||
|
||||
roi = img[np.int32(dst)[0][0][1]:np.int32(dst)[2][0][1], np.int32(dst)[0][0][0]:np.int32(dst)[2][0][0]]
|
||||
# roi = detect_black(roi)
|
||||
|
||||
# img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA)
|
||||
else:
|
||||
print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
|
||||
|
||||
return roi
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
rospy.init_node("maintain")
|
||||
rospy.loginfo("maintain task start ......")
|
||||
|
||||
rgb_sub = message_filters.Subscriber("/camera/color/image_raw", Image)
|
||||
depth_sub = message_filters.Subscriber("/camera/aligned_depth_to_color/image_raw", Image)
|
||||
|
||||
ts = message_filters.TimeSynchronizer([rgb_sub, depth_sub], 1)
|
||||
ts.registerCallback(callback)
|
||||
|
||||
|
||||
rospy.spin()
|
||||
|
||||
|
||||
# backup
|
||||
def calculate_image_edge_plane_normal(depth_roi):
|
||||
# Get the shape of the depth_roi
|
||||
height, width = depth_roi.shape
|
||||
|
||||
# Get the edges of the ROI
|
||||
left_edge = [(0, y) for y in range(height)]
|
||||
right_edge = [(width-1, y) for y in range(height)]
|
||||
top_edge = [(x, 0) for x in range(width)]
|
||||
bottom_edge = [(x, height-1) for x in range(width)]
|
||||
edges = left_edge + right_edge + top_edge + bottom_edge
|
||||
|
||||
# Create a 2D grid of X and Y coordinates
|
||||
X, Y = np.meshgrid(np.arange(width), np.arange(height))
|
||||
|
||||
# Reshape the X, Y, and depth_roi arrays into one-dimensional arrays
|
||||
X = X.reshape(-1)
|
||||
Y = Y.reshape(-1)
|
||||
Z = depth_roi.reshape(-1)
|
||||
|
||||
# Stack the X, Y, and depth_roi arrays vertically to create a 3D array of points in the form of [X, Y, Z]
|
||||
points = np.vstack([X, Y, Z]).T
|
||||
|
||||
# Compute the mean depth value of the edges
|
||||
edge_depths = []
|
||||
for edge_point in edges:
|
||||
edge_depths.append(depth_roi[edge_point[1], edge_point[0]])
|
||||
mean_depth = np.mean(edge_depths)
|
||||
|
||||
# Create a mask to extract the points on the edges
|
||||
mask = np.zeros_like(depth_roi, dtype=np.uint8)
|
||||
for edge_point in edges:
|
||||
mask[edge_point[1], edge_point[0]] = 1
|
||||
masked_depth_roi = depth_roi * mask
|
||||
|
||||
# Extract the 3D coordinates of the points on the edges
|
||||
edge_points = []
|
||||
for edge_point in edges:
|
||||
edge_points.append([edge_point[0], edge_point[1], masked_depth_roi[edge_point[1], edge_point[0]]])
|
||||
|
||||
# Convert the list of edge points to a numpy array
|
||||
edge_points = np.array(edge_points)
|
||||
|
||||
# Shift the edge points so that the mean depth value is at the origin
|
||||
edge_points = edge_points - np.array([width/2, height/2, mean_depth])
|
||||
|
||||
# Compute the singular value decomposition (SVD) of the edge points
|
||||
U, S, V = np.linalg.svd(edge_points)
|
||||
|
||||
# Extract the normal vector of the plane that best fits the edge points from the right-singular vector corresponding to the smallest singular value
|
||||
normal = V[2]
|
||||
|
||||
return normal
|
||||
@@ -60,6 +60,17 @@ def compute_plane_normal(box, depth, color_intrinsics):
|
||||
normal += np.cross(v3, v4)
|
||||
normal += np.cross(v4, v1)
|
||||
normal /= np.linalg.norm(normal)
|
||||
# 计算法向量相对于参考向量的旋转角度和旋转轴
|
||||
ref_vector = np.array([0, 0, 1])
|
||||
normal_vector = normal
|
||||
angle = math.acos(np.dot(ref_vector, normal_vector) / (np.linalg.norm(ref_vector) * np.linalg.norm(normal_vector)))
|
||||
axis = np.cross(ref_vector, normal_vector)
|
||||
axis = axis / np.linalg.norm(axis)
|
||||
|
||||
# 将旋转角度和旋转轴转换为四元数
|
||||
qx, qy, qz, qw = tf.transformations.quaternion_about_axis(angle, axis)
|
||||
quaternion = [qx, qy, qz, qw]
|
||||
return quaternion
|
||||
|
||||
# 计算法向量相对于参考向量的旋转角度和旋转轴
|
||||
ref_vector = np.array([0, 0, 1])
|
||||
@@ -73,30 +84,76 @@ def compute_plane_normal(box, depth, color_intrinsics):
|
||||
quaternion = [qx, qy, qz, qw]
|
||||
return quaternion
|
||||
|
||||
def compute_normal_vector(p1, p2, p3, p4):
|
||||
# Compute two vectors in the plane
|
||||
v1 = np.array(p2) - np.array(p1)
|
||||
v2 = np.array(p3) - np.array(p1)
|
||||
# Compute the cross product of the two vectors to get the normal vector
|
||||
n = np.cross(v1, v2)
|
||||
# Compute the fourth point in the plane
|
||||
p4 = np.array(p4)
|
||||
# Check if the fourth point is on the same side of the plane as the origin
|
||||
if np.dot(n, p4 - np.array(p1)) < 0:
|
||||
n = -n
|
||||
# Normalize the normal vector to obtain a unit vector
|
||||
n = n / np.linalg.norm(n)
|
||||
# 计算法向量相对于参考向量的旋转角度和旋转轴
|
||||
ref_vector = np.array([0, 0, 1])
|
||||
normal_vector = n
|
||||
angle = math.acos(np.dot(ref_vector, normal_vector) / (np.linalg.norm(ref_vector) * np.linalg.norm(normal_vector)))
|
||||
axis = np.cross(ref_vector, normal_vector)
|
||||
axis = axis / np.linalg.norm(axis)
|
||||
def calculate_image_edge_plane_normal(depth_roi):
|
||||
# Get the shape of the depth_roi
|
||||
height, width = depth_roi.shape
|
||||
|
||||
# Get the edges of the ROI
|
||||
left_edge = [(0, y) for y in range(height)]
|
||||
right_edge = [(width-1, y) for y in range(height)]
|
||||
top_edge = [(x, 0) for x in range(width)]
|
||||
bottom_edge = [(x, height-1) for x in range(width)]
|
||||
edges = left_edge + right_edge + top_edge + bottom_edge
|
||||
|
||||
# 将旋转角度和旋转轴转换为四元数
|
||||
qx, qy, qz, qw = tf.transformations.quaternion_about_axis(angle, axis)
|
||||
quaternion = [qx, qy, qz, qw]
|
||||
return quaternion
|
||||
# Create a 2D grid of X and Y coordinates
|
||||
X, Y = np.meshgrid(np.arange(width), np.arange(height))
|
||||
|
||||
# Reshape the X, Y, and depth_roi arrays into one-dimensional arrays
|
||||
X = X.reshape(-1)
|
||||
Y = Y.reshape(-1)
|
||||
Z = depth_roi.reshape(-1)
|
||||
|
||||
# Stack the X, Y, and depth_roi arrays vertically to create a 3D array of points in the form of [X, Y, Z]
|
||||
points = np.vstack([X, Y, Z]).T
|
||||
|
||||
# Compute the mean depth value of the edges
|
||||
edge_depths = []
|
||||
for edge_point in edges:
|
||||
edge_depths.append(depth_roi[edge_point[1], edge_point[0]])
|
||||
mean_depth = np.mean(edge_depths)
|
||||
|
||||
# Create a mask to extract the points on the edges
|
||||
mask = np.zeros_like(depth_roi, dtype=np.uint8)
|
||||
for edge_point in edges:
|
||||
mask[edge_point[1], edge_point[0]] = 1
|
||||
masked_depth_roi = depth_roi * mask
|
||||
|
||||
# Extract the 3D coordinates of the points on the edges
|
||||
edge_points = []
|
||||
for edge_point in edges:
|
||||
edge_points.append([edge_point[0], edge_point[1], masked_depth_roi[edge_point[1], edge_point[0]]])
|
||||
|
||||
# Convert the list of edge points to a numpy array
|
||||
edge_points = np.array(edge_points)
|
||||
|
||||
# Shift the edge points so that the mean depth value is at the origin
|
||||
edge_points = edge_points - np.array([width/2, height/2, mean_depth])
|
||||
|
||||
# Compute the singular value decomposition (SVD) of the edge points
|
||||
U, S, V = np.linalg.svd(edge_points)
|
||||
|
||||
# Extract the normal vector of the plane that best fits the edge points from the right-singular vector corresponding to the smallest singular value
|
||||
normal = V[2]
|
||||
|
||||
return normal
|
||||
|
||||
# def compute_normal_vector(p1, p2, p3, p4):
|
||||
# # Compute two vectors in the plane
|
||||
# v1 = np.array(p2) - np.array(p1)
|
||||
# v2 = np.array(p3) - np.array(p1)
|
||||
# # Compute the cross product of the two vectors to get the normal vector
|
||||
# n = np.cross(v1, v2)
|
||||
# # Compute the fourth point in the plane
|
||||
# p4 = np.array(p4)
|
||||
# # Check if the fourth point is on the same side of the plane as the origin
|
||||
# if np.dot(n, p4 - np.array(p1)) < 0:
|
||||
# n = -n
|
||||
# # Normalize the normal vector to obtain a unit vector
|
||||
# n = n / np.linalg.norm(n)
|
||||
# theta = math.acos(n[2])
|
||||
# sin_theta_2 = math.sin(theta/2)
|
||||
# quaternion = [math.cos(theta/2), sin_theta_2 * n[0], sin_theta_2 * n[1], sin_theta_2 * n[2]]
|
||||
# return quaternion
|
||||
|
||||
def filter_quaternion(quat, quat_prev, alpha):
|
||||
if quat_prev is None:
|
||||
|
||||
@@ -50,7 +50,8 @@
|
||||
<param name="publish_image" value="$(arg publish_image)"/>
|
||||
<param name="output_image_topic" value="$(arg output_image_topic)"/>
|
||||
</node>
|
||||
<!-- <include file="$(find camera_launch)/launch/d435.launch"/> -->
|
||||
<include file="$(find realsense2_camera)/launch/my_camera.launch" >
|
||||
</include>
|
||||
|
||||
|
||||
</launch>
|
||||
|
||||
Reference in New Issue
Block a user